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Preprocessor
The preprocessor is a tool that processes your source code before compilation. It 
handles directives for preprocessing, such as #include, #define, and conditional 
compilation.

Key Features:
• File Inclusion (#include): Incorporates the contents of a file into the source code, typically used 

for header files.
• Macro Definition (#define): Defines macros, which are snippets of code that are given a name. 

Whenever the name is used, it is replaced by the content of the macro.
• Conditional Compilation: Allows compiling code selectively based on conditions evaluated by 

the preprocessor (#ifdef, #ifndef, #if, #elif, #else, #endif).
• Error Directive (#error): Generates an error from a specified location in your code, useful for 

flagging incorrect conditions during preprocessing.
• Pragma directives (#pragma): Issues special commands to the compiler, such as optimization 

levels or code layout suggestions.
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Preprocessor example

Input: C/C++ source code
Output: Preprocessed C/C++ source code

https://godbolt.org/z/zaacW8oGb 

https://godbolt.org/z/zaacW8oGb
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Why preprocessor is needed?

Importance:
• Simplifies code by allowing file inclusion and macro expansions.
• Enables platform-specific compilation through conditional directives.
• Facilitates code maintenance and readability with organized, reusable 

code blocks; enables static polymorphism and other aspects of meta-
programming

Use cases:
• Defining compile-time constants.
• Conditional compilation for cross-platform support.
• Simplifying complex expressions or code snippets for readability and 

reusability.
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Goals of lexical analysis

• Convert physical representation to machine-readable sequence of tokens
• Tokens are the smallest units in the source code, such as keywords, identifiers, 

literals, operators, and punctuation symbols (like commas and semicolons).

• Associate each token with a lexeme
• E.g., 42 is an integer literal (token) with the value of 42 (lexeme)
• In essence, a lexeme is the textual string in the source code, while a token is a 

structured object that represents a categorized lexeme along with its classification

• Tokens may have extra attributes
• The result will be then used to build AST
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Basics

for (int i = 0; i < 42; i+
+)

for L_par type(int) ident(i) eq int 
lit(0) semicol ident(i) less int 

lit(42) semicol ident(i) inc R_par
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Choosing the right tokens

• Depends on your language
• Typically

• Keywords
• Literals
• Punctuation
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Formal languages

• A formal language consists of words whose letters are taken from an 
alphabet and are well-formed according to a specific set of rules.

• Examples
• Alphabet Σ = {a, b}, Language = Σ* - the set of all words over alphabet
• Alphabet Σ = {a}, Language = {a}* = {an} - where n ranges over the natural 

numbers and "an" means "a" repeated n times (this is the set of words 
consisting only of the symbol "a");
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Regular expressions

• Regular expressions are a family of descriptions that can be used to 
capture regular languages

• There’s a set of operations on regular expressions (concatenation, 
alternation, Kleene star: concatenation of zero or more strings from the 
set)

• There are multiple standards to describe the syntax of regular 
expressions
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Matching regular expressions

• Regular expressions can be implemented as finite-state machines
• A finite-state machine is an abstract machine that can be in exactly one of 

a finite number of states

https://en.wikipedia.org/wiki/Finite-state_machine 

https://en.wikipedia.org/wiki/Finite-state_machine
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Ambiguity resolution

• Consider we have words do and double. How to assign tokens?
• Rules

• Left-to-right scanning
• Maximal munch – always match the longest occurrence
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Lexical challenges

As seen by C++ compiler developers
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Grammars

• A formal grammar is a set of rules that describe how to form strings from 
a language’s alphabet that are valid according to the language syntax

• Example:
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The Chomsky hierarchy

• Recursively enumerable (RE, Type 0)
• Recursively enumerable subset in the set of all possible words over the 

alphabet of the language

• Context-sensitive grammars (CSG, Type 1)
• Left-hand side (LHS) and right-hand side (RHS) may be surrounded by a 

context of terminal and nonterminal symbols

• Context-free grammars (CFG, Type 2)
• LHS of each production rule consists only of a single nonterminal symbol

• Regular grammars (Type 3)
• All production rules have at most 1 nonterminal symbol
• The symbol is always either at the start or at the end of rule’s RHS

- Expressiveness
- Recognition complexity

- Restrictions on 
Production Rules
- Ease of Parsing

- Determinism
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The Chomsky hierarchy (examples)

• Recursively enumerable (RE, Type 0)
• These grammars can describe any language that can be recognized 

by a Turing machine, including highly complex or undecidable 
problems. There are not many practical examples in programming 
due to their complexity and generality

• Context-sensitive grammars (CSG, Type 1)
• Ones that can be represented by linear bound automata (some set 

of limitations applied on Turing machine)

• Context-free grammars (CFG, Type 2)
• Programming languages

• Regular grammars (Type 3)
• Regular expressions and finite automata can describe these 

languages

- Expressiveness
- Recognition complexity

- Restrictions on 
Production Rules
- Ease of Parsing

- DeterminismOur focus is set on highlighted types 
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Backus–Naur form

• BNF is a metasyntax notation for CFG, often used to describe 
programming languages 

• All rules are written in the following format
• <symbol> ::= __expression__

• Examples:
• Python grammar is a mixture of EBNF and PEG (parsing expression grammar) 

https://docs.python.org/3/reference/grammar.html
• YAML also has BNF description fractions in their spec: 

https://yaml.org/spec/1.2.2/ 
• JSON has unofficial pure BNF description: 

https://github.com/JetBrains/Grammar-Kit/blob/master/testData/livePreview/Jso
n.bnf
, official spec also has only fractions of BNF https://www.json.org/json-en.html 

https://docs.python.org/3/reference/grammar.html
https://yaml.org/spec/1.2.2/
https://github.com/JetBrains/Grammar-Kit/blob/master/testData/livePreview/Json.bnf
https://github.com/JetBrains/Grammar-Kit/blob/master/testData/livePreview/Json.bnf
https://www.json.org/json-en.html
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BNF example: grammar for basic arithmetic 
expressions
<expression> ::= <term>
               | <expression> "+" <term>
               | <expression> "-" <term>
<term>       ::= <factor>
               | <term> "*" <factor>
               | <term> "/" <factor>
<factor>     ::= <number>
               | "(" <expression> ")"
<number>     ::= <digit>
               | <digit> <number>
<digit>      ::= "0" | "1" | "2" | "3" | 
"4"
               | "5" | "6" | "7" | "8" | 
"9"

Arithmetic expressions conforming 
given BNF grammar:

● 42
● 3+5
● 3+5*2
● (3+5)*2
● (1+2)*(3-4)/5
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From concrete to abstract trees

• As a result of parsing, you will get a parse tree, which is also a concrete 
syntax tree

• It contains all the small details about textual representation

• Abstract syntax tree omits those irrelevant details
• Parenthesis, semicolons, commas…

• To get an abstract tree, you recursively traverse the parsing tree
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Different types of parsing

• Top-down parsing
• Beginning with the start symbol, try to guess the productions to apply to end up 

at the user’s program

• Bottom-up parsing
• Beginning with user’s program, try to apply productions in reverse to convert the 

program back into the start symbol
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LL(k) parsers

• Left-to-right, leftmost derivation
• Top-down parser for context-free languages
• k tokens of lookahead
• Most popular – LL(1) parsers
• Will not be covered in details by this course
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Syntax challenges

As seen by C++ compiler developers
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A word of advice

• Do not re-invent the wheel!
• This problem has been solved before
• Try to use existing grammar description 

formats and use parser generators

Pic: 
https://www.ictworks.org/2015/07/10/stop-reinventing-the-flat-tire-with
-custom-software-development/
 

https://www.ictworks.org/2015/07/10/stop-reinventing-the-flat-tire-with-custom-software-development/
https://www.ictworks.org/2015/07/10/stop-reinventing-the-flat-tire-with-custom-software-development/
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Goals of semantic analysis

• Ensure that the program has a well-defined meaning
• Variables and symbols are defined before they are used
• Expressions have the right types
• … 

• Gather useful information for later stages
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Validity vs correctness

• Valid syntax does not mean your program is correct
• The following sample is only correct if x is 2
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Symbol tables

• Basically, a hash map where key is symbol name and value is its graph 
node

• Except that it is scoped

• Example implementation: 
https://llvm.org/doxygen/classllvm_1_1ScopedHashTable.html 

https://llvm.org/doxygen/classllvm_1_1ScopedHashTable.html
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OOP challenges

• Classes may have parents
• In that case we must look up symbol in base class symbol tables as well
• Actual implementations may be different for particular languages
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Multiple inheritance

• Some languages allow multiple base classes
• In that case we must look up the symbol in each base class
• Again, rules depend on language design
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IR generation

• Consumes AST
• Produces LLVM IR

• more on that
on lecture 04
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Overview of Clang
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Simplified compiler flow

SRC Driver Preprocessor 
& lexer Parser Sema CodeGen Compiler Linker

Tokens AST IR
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Clang driver

• Clang supports multiple compatibility modes: with GCC and MSVC
• The part that parses options and issues compile commands is called 

driver
• Output can be seen with -### flag

https://godbolt.org/z/rWhqnzhT7 

https://godbolt.org/z/rWhqnzhT7
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Preprocessor

GCC:
gcc -E in.cpp
GNU C compiler preprocessor as a standalone binary. You can use it 
directly to preprocess C files.
cpp in.cpp in.i

Clang:
clang -E in.cpp

https://godbolt.org/z/5nzzbE15T 

https://godbolt.org/z/5nzzbE15T
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Lexer

• Starts right after preprocessor
• Flags

• -c – compile only
• -Xclang -dump-tokens – bypass driver and pass -dump-tokens to FE

https://godbolt.org/z/7bPxao3Pz 

https://godbolt.org/z/7bPxao3Pz
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Lexer internals

• Token kinds defined in clang/include/clang/Basic/TokenKinds.def 

• Consumed by clang/include/clang/Parse/Parser.h 

https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Basic/TokenKinds.def
https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Parse/Parser.h
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Parser

• Handwritten recursive-descent parser
• Tentative parsing by looking at the tokens ahead

• the parser can “peek” ahead and choose the best path without committing 
prematurely

• Try to recover from errors as much as possible
• Prevents cascading errors by synchronizing at known recovery points

• Suggest FIX-IT hints
• Analyzes error contexts to suggest potential fixes (e.g., missing semicolons, 

unmatched parentheses)
• Aims to improve developer productivity by providing actionable guidance
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Sema

• Tightly coupled with parser
• Verifies AST before it is sent out to other clients
• Biggest client of diagnostics subsystem

• Most warnings and errors come out of here
• Sema verifies that the syntax that passes the parsing stage also makes 

sense according to the rules of the language
• This involves checking for type errors, ensuring that variables are declared before 

use, enforcing scope rules, and more.
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AST

https://llvm.org/devmtg/2019-10/slides/ClangTutorial-Stulova-vanHaastregt.pdf 

https://godbolt.org/z/6Wq38MbPj 

https://llvm.org/devmtg/2019-10/slides/ClangTutorial-Stulova-vanHaastregt.pdf
https://godbolt.org/z/6Wq38MbPj
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Diagnostics

• Defined in Diagnostic*Kind.td

• Diagnostic engine tries to render output in human-readable format
• Not always successful, especially in heavily templated code
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TableGen language

• The LLVM TableGen language is a domain-specific language used within 
the LLVM project framework.

• Key points:
• Data Description Tool
• Code Generation
• Extensible with writing additional code generators
• Language is widely used in LLVM frontend and backend, MLIR and other 

components
• Language reference: https://llvm.org/docs/TableGen/ProgRef.html 

https://llvm.org/docs/TableGen/ProgRef.html
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TableGen example

Here is the example:
• code snippet that could be used 

to add new attribute for clang

// In File: clang/include/clang/Basic/Attr.td

include "clang/Basic/AttrDocs.td"

def MyAttr : InheritableAttr {
  let Documentation = [Undocumented];
  // This specifies the attribute is for 
functions.
  let Subjects = SubjectList<[Function], 
ErrorDiag>;
  // The spelling of the attribute in the source 
code.
  let Spellings = [CXX11<"clang", "my_attr">];
  // The attribute does not take any arguments.
  let Args = [];
}

[[clang::my_attr]]
void foo() {
   
}

__attribute__((my_attr
))
void foo() {
   
}



47

Lab assignment #0

• Try to build LLVM and Clang from source code and run tests
• Source code: https://github.com/NN-complr-tech/compiler-course-2025 
• Follow build instructions: https://llvm.org/docs/CMake.html 
• Make sure to run check-clang and check-llvm targets, e.g.

• cmake --build . --target check-clang

• Better done on Linux or macOS. Windows is also OK.
• Goal: learn how to work with basic LLVM infrastructure
• Build may take several hours
• Build usually requires 2GB of RAM per 1 thread. One can reduce number 

of threads with -j n flag, where n is a number of threads

https://github.com/NN-complr-tech/compiler-course-2025
https://llvm.org/docs/CMake.html
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Next time…

• Look closer at practical usages of clang AST
• Working with AST
• Clang plugins
• Clang-tidy and static analysis
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Test

https://forms.gle/sA5VYne7p9UyHdbH9 

Backup: me@gooddoog.ru 

https://forms.gle/sA5VYne7p9UyHdbH9
mailto:me@gooddoog.ru
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Extra materials
• An overview of Clang, LLVM Dev 2019 - https://www.youtube.com/watch?v=5kkMpJpIGYU 

• What is C++, Chandler Carruth, Titus Winters - https://www.youtube.com/watch?v=LJh5QCV4wDg 

• Гладкий А. В. Формальные грамматики и языки (RU)

• Хопкрофт Дж., Мотвани Р., Ульман Дж. Введение в теорию автоматов, языков и вычислений (RU)

• Hacking on clang - https://clang.llvm.org/hacking.html 

• Lessons in TableGen - https://www.youtube.com/watch?v=45gmF77JFBY 

• The Clang AST - a tutorial - https://www.youtube.com/watch?v=VqCkCDFLSsc 

https://www.youtube.com/watch?v=5kkMpJpIGYU
https://www.youtube.com/watch?v=LJh5QCV4wDg
https://clang.llvm.org/hacking.html
https://www.youtube.com/watch?v=45gmF77JFBY
https://www.youtube.com/watch?v=VqCkCDFLSsc
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