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Preprocessor

The preprocessor is a tool that processes your source code before compilation. It
handles directives for preprocessing, such as #include, #define, and conditional
compilation.

Key Features:

File Inclusion (#include): Incorporates the contents of a file into the source code, typically used
for header files.

Macro Definition (#define): Defines macros, which are snippets of code that are given a name.
Whenever the name is used, it is replaced by the content of the macro.

Conditional Compilation: Allows compiling code selectively based on conditions evaluated by
the preprocessor (#ifdef, #ifndef, #if, #elif, #else, #endif).

Error Directive (#error): Generates an error from a specified location in your code, useful for
flagging incorrect conditions during preprocessing.

Pragma directives (#pragma): Issues special commands to the compiler, such as optimization
levels or code layout suggestions.



Preprocessor example

Input: C/C++ source code
Output: Preprocessed C/C++ source code

00t@32b489cdaéd?: /tmp# clang+ -E preproc.cpp
1 "preproc.cpp"

1 "<built-in>" 1

1 "<built-in>" 3

400 "<built-in>" 3

1 "<command line>" 1

1 "<built-in>" 2

1 "preproc.cpp" 2

#define PI

float area(float r) {
return PI * r * PI
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float area(float r) {
return 3.14 * r * r;

}
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.| https://godbolt.org/z/zaacW80Ghb



https://godbolt.org/z/zaacW8oGb

Why preprocessor is needed?

Importance:

* Simplifies code by allowing file inclusion and macro expansions.

* Enables platform-specific compilation through conditional directives.

* Facilitates code maintenance and readability with organized, reusable
code blocks; enables static polymorphism and other aspects of meta-
programming

Use cases:

* Defining compile-time constants.

* Conditional compilation for cross-platform support.

* Simplifying complex expressions or code snippets for readability and
reusability.
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Goals of lexical analysis

* Convert physical representation to machine-readable sequence of tokens
* Tokens are the smallest units in the source code, such as keywords, identifiers,
literals, operators, and punctuation symbols (like commas and semicolons).
* Associate each token with a lexeme
e E.g., 42 is an integer literal (token) with the value of 42 (lexeme)

* In essence, a lexeme is the textual string in the source code, while a token is a
structured object that represents a categorized lexeme along with its classification

* Tokens may have extra attributes
* The result will be then used to build AST
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Choosing the right tokens

* Depends on your language

* Typically
* Keywords
* Literals
* Punctuation



Formal languages

* Aformal language consists of words whose letters are taken from an

alphabet and are well-formed according to a specific set of rules.
* Examples

e Alphabet X ={a, b}, Language =X* - the set of all words over alphabet
* Alphabet X ={a}, Language = {a}* = {a"} - where n ranges over the natural

numbers and "a"" means "a" repeated n times (this is the set of words
consisting only of the symbol "a");



Regular expressions

* Regular expressions are a family of descriptions that can be used to
capture regular languages

* There’s a set of operations on regular expressions (concatenation,
alternation, Kleene star: concatenation of zero or more strings from the
set)

* There are multiple standards to describe the syntax of regular
expressions



Matching regular expressions

* Regular expressions can be implemented as finite-state machines

* A finite-state machine is an abstract machine that can be in exactly one of
a finite number of states

Push Coin

Push Coin

https://en.wikipedia.org/wiki/Finite-state _machine



https://en.wikipedia.org/wiki/Finite-state_machine

Ambiguity resolution

* Consider we have words do and double. How to assign tokens?

* Rules
* Left-to-right scanning
* Maximal munch - always match the longest occurrence



Lexical challenges

As seen by C++ compiler developers

vector

A;

foo() H{

std::vector<std::vector<
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Grammars

* A formal grammar is a set of rules that describe how to form strings from
a language’s alphabet that are valid according to the language syntax

* Example:

S - aSb
S > ab
Valid words: ab, aabb, aaabbb, ...



The Chomsky hierarchy Expressiveness

- Recognition complexity

e Recursively enumerable (RE, Type 0) ‘r

* Recursively enumerable subset in the set of all possible words over the
alphabet of the language

e Context-sensitive grammars (CSG, Type 1)

 Left-hand side (LHS) and right-hand side (RHS) may be surrounded by a
context of terminal and nonterminal symbols

e Context-free grammars (CFG, Type 2)
* LHS of each production rule consists only of a single nonterminal symbol

e Regular grammars (Type 3)
* All production rules have at most 1 nonterminal symbol
* The symbol is always either at the start or at the end of rule’s RHS

:

- Restrictions on
Production Rules
- Ease of Parsing

- Determinism



The Chomsky hierarchy (examples) Eupressiveness
- Recognition complexity
e Recursively enumerable (RE, Type 0) T

* These grammars can describe any language that can be recognized
by a Turing machine, including highly complex or undecidable
problems. There are not many practical examples in programming
due to their complexity and generality

e Context-sensitive grammars (CSG, Type 1)

* Ones that can be represented by linear bound automata (some set

of limitations applied on Turing machine)
* Context-free grammars (CFG, Type 2)
* Programming languages

e Regular grammars (Type 3)

* Regular expressions and finite automata can describe these
languages Our focus is set on highlighted types

;

- Restrictions on
Production Rules
- Ease of Parsing

- Determinism



Backus-Naur form

* BNF is a metasyntax notation for CFG, often used to describe
programming languages

* All rules are written in the following format
e <symbol> ::=  expression
* Examples:

e Python grammar is a mixture of EBNF and PEG (parsing expression grammar)
https://docs.python.org/3/reference/grammar.html

* YAML also has BNF description fractions in their spec:
https://vyaml.org/spec/1.2.2/

* JSON has unofficial pure BNF description:

htltgos%://zithub.com/JetBrains/Grammar-Kit/bIob/master/testData/IivePreview/Jso
n.bn

, official spec also has only fractions of BNF https://www.json.org/json-en.html



https://docs.python.org/3/reference/grammar.html
https://yaml.org/spec/1.2.2/
https://github.com/JetBrains/Grammar-Kit/blob/master/testData/livePreview/Json.bnf
https://github.com/JetBrains/Grammar-Kit/blob/master/testData/livePreview/Json.bnf
https://www.json.org/json-en.html

BNF example: grammar for basic arithmetic

expressions
<expressions ::= <terms Arithmetic expressions conforming
| <expression> "+" <term> .
| <expression> "-" <term> given BNF grammar:
<term> 1= <factor>
| <term> "*" <factor>
| <term> "/" <factor>
<factor> : 1= <number> ® 42
| "(" <expression> ")"
<number> 1= <digit> ® 3+5
| <digit> <number>
<digit> : := IIOII I II1II | II2II | II3II I ‘ 3+5*2
II4II *
| II5II | II6II | II7II | II8II | . (3+5 ) 2

o ® (1+2)*(3-4)/5



From concrete to abstract trees

* As a result of parsing, you will get a parse tree, which is also a concrete
syntax tree

* |t contains all the small details about textual representation

* Abstract syntax tree omits those irrelevant details
* Parenthesis, semicolons, commas...

* To get an abstract tree, you recursively traverse the parsing tree



Different types of parsing

* Top-down parsing
* Beginning with the start symbol, try to guess the productions to apply to end up
at the user’s program
* Bottom-up parsing

* Beginning with user’s program, try to apply productions in reverse to convert the
program back into the start symbol



LL(k) parsers

* Left-to-right, leftmost derivation

* Top-down parser for context-free languages
* k tokens of lookahead

* Most popular - LL(1) parsers

* Will not be covered in details by this course



Syntax challenges

As seen by C++ compiler developers

vector
A;
fool( A) H

std:: vector< > vecl(A);




A word of advice

* Do not re-invent the wheel!
* This problem has been solved before

* Try to use existing grammar description
formats and use parser generators



https://www.ictworks.org/2015/07/10/stop-reinventing-the-flat-tire-with-custom-software-development/
https://www.ictworks.org/2015/07/10/stop-reinventing-the-flat-tire-with-custom-software-development/
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Goals of semantic analysis

* Ensure that the program has a well-defined meaning
* Variables and symbols are defined before they are used
* Expressions have the right types

* Gather useful information for later stages



Validity vs correctness

* Valid syntax does not mean your program is correct
* The following sample is only correct if x is 2

square( x) H{

.




Symbol tables

* Basically, a hash map where key is symbol name and value is its graph
node

* Except that it is scoped

foo( a) {

std::cout << a << ”"H'l”;

* Example implementation:
https://llvm.org/doxygen/classlivm 1 1ScopedHashTable.html



https://llvm.org/doxygen/classllvm_1_1ScopedHashTable.html

OOP challenges

* Classes may have parents
* In that case we must look up symbol in base class symbol tables as well
* Actual implementations may be different for particular languages



Multiple inheritance

* Some languages allow multiple base classes
* In that case we must look up the symbol in each base class
* Again, rules depend on language design
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IR generation

* Consumes AST
* Produces LLVM IR

* more on that
on lecture 04

%3
34

store i32

call void
store i32
call void
%5 load
%6 load

attributes #0
attributes #1

noundef i32 @sum(int, int)(i32 noundef %0, i32 noundef %1) #0 !dbg !10 {

alloca 132, 4
alloca 132, 4

%0, ptr %3, )

@llvm.dbg.declare(metadata ptr %3, metadata !16, metadata !DIExpression()), !dbg !17
%1, ptr %4, 4

@llvm.dbg.declare(metadata ptr %4, metadata !18, metadata !DIExpression()), !dbg !19
i32, ptr %3, 4, !dbg !20

i32, ptr %4, 4, !dbg !21

%7 = add nsw 132 %5, %6, !dbg !22
ret i32 %7, !dbg 123

void @llvm.dbg.declare(metadata, metadata, metadata) #l

{ mustprogress "frame-pointer"="all" "min-legal-vector-width"="0"

{ nocallback nofree nosync willreturn memory ( ) }

"no-trapping-math"="




Overview of Clang



Simplified compiler flow

Preprocessor
& lexer

Compiler gud Linker




Clang driver

* Clang supports multiple compatibility modes: with GCC and MSVC

* The part that parses options and issues compile commands is called
driver

* Qutput can be seen with - ### flag

root@32b489cdasd?: /tmp# clang+ -## sample.cpp
clang version 15.8.0 (https://github.com/intel/llvm 551c87bb5025b5740327e94cd30135F6aff7b81e)
Target: x86_64-unknown-linux-gnu
Thread model: posix
Installeddir: fopt/sycl/bin
"fopt/sycl/bin/clang-15" "-ccl" "-triple" "x86_64-unknown-linux-gnu” "-emit-obj" r mrelax-relocations™ "-disable-free" "-clear-ast-before-backend" "-main-file-name” "sample.cpp" "-mrelocation-model" "static® "-mframe-pointer=all" "-fmath-errn
ffp-contract= "-fno-rounding-math" "-mconstructor-aliases" "-funwind-tables= 86-64" "-tune-cpu" "generic" 1lvm" "-treat-scalable-fixed-error-as-warning" "-debugger-tuning=gdb" "-fcoverage-compilation-dir=/tmp" "-resource-dir" "/opt/sy

b/clang/15.0.8" "-internal-isystem" "/usr/lib/gcc/x86_64-Linux-gnu/$/ ../ ../ ../ .. [include/c+ /9" "-internal-isystem” "/usr/lib/gcc/x86_64-1inux-gnu/9/../../ ../ ../include/x86_64-1Linux-gnu/c+/9" "-internal-isystem"” "/usr/lib/gcc/xB6_64-1inux-gnu/9/ ../ ../..[../inclu
defc+/9/backward” "-internal-isystem" "/opt/sycl/lib/clang/15.0.0/include” "-internal-isystem” "/usr/local/include” "-internal-isystem" "/usr/lib/gcc/x86_é4-Linux-gnu/9/../ ../ ../ .. /x86_64-1inux-gnu/include” "-internal-externc-isystem" "/usr/include/x86_64-1linux-
gnu™ "-internal-externc-isystem" "/include" "-internal-externc-isystem" "/usr/include" "-fdeprecated-macro" "-fdebug-compilation-dir=/tmp" "-ferror-1imit" 19" "-fgnuc-version fcxx-exceptions" "-fexceptions" "-fcolor-diagnostics" "-faddrsig® "-D__GCC_HAV
SM=1" "-o" "/tmp/sample-282fcc.o" "-x" "c+" "sample.cpp”
Z" "relro" "--hash-style=gnu” -eh-frame-hdr" 1" "elf_x86_64" "-dynamic-linker" "/1libé4/1d-linux-x86-64.s50.2" "-0" "a.out™ "/Lib/xBé_é4-linux-gnu/crtl.o” "/1ib/x86_64-1inu; nu/crti.o” "fusr/lib/gcc/x86_64-1inux-gnu/9/crtbegin.o” ™ usr/1lib/g
-L/usr/1lib/g x86_64-1inux-gnu/9/ ../ .. 1L " "-L/1lib/x86_é4-Linux-gnu" "-L/1lib/../1ibé4" "-L/usr/1ib/x86_64-1inux-gnu" “"-L/usr/lib/..[libé4" "-L/opt/sycl/bin/../1ib" "-L/1ib" "-L/usr/lil "/tmp/sample-282fcc.o" "-lstdc+" "-1m" "-1
ce_s" "-lgec" "/usr/lib/gcc/xB6_64-1inux-gnu/9/crtend.o" "/1ib/x86_64-1inux-gnu/crtn.o"

https://godbolt.org/z/rWhanzhT7



https://godbolt.org/z/rWhqnzhT7

Preprocessor

GCC:
gcc -E 1n.cpp

GNU C compiler preprocessor as a standalone binary. You can use it
directly to preprocess C files.

cCpp 1n.cpp in.1

Clang:
clang -E 1in.cpp

https://godbolt.org/z/5nzzbE15T



https://godbolt.org/z/5nzzbE15T

L exer

* Starts right after preprocessor

* Flags
* -c - compile only
* -Xclang -dump-tokens - bypass driver and pass -dump-tokens to FE

root@32b489cda6d9: /tmp# clang+ -c -Xclang -dump-tokens sample.cpp
int 'int’ [StartOfLine] Loc=<sample.cpp:1:1>

identifier 'square’ [LeadingSpace] Loc=<sample.cpp:1:5>
1_paren '(' Loc=<sample.cpp:1:11>

int 'int’ Loc=<sample.cpp:1:12>

identifier 'x' [LeadingSpace] Loc=<sample.cpp:1:16>

r_paren ')’ Loc=<sample.cpp:1:17>

1_brace '{' [LeadingSpace] Loc=<sample.cpp:1:19>

return 'return' [StartOfLine] [LeadingSpacel] Loc=<sample.cpp:2:3>
identifier 'x' [LeadingSpace] Loc=<sample.cpp:2:10>

star 'x' [LeadingSpace] Loc=<sample.cpp:2:12>

identifier 'x' [LeadingSpace] Loc=<sample.cpp:2:14>

semi ';' Loc=<sample.cpp:2:15>

r_brace '}’ [Start0flLine] Loc=<sample.cpp:3:1>

eof "' Loc=<sample.cpp:3:2>

int square(int x) {

return x * XI

}

https://godbolt.org/z/7bPxaoc3Pz



https://godbolt.org/z/7bPxao3Pz

Lexer internals

e Token kinds defined in clang/include/clang/Basic/TokenKinds.def

KEYWORD(float KEYALL)
KEYWORD (for KEYALL)
KEYWORD (goto KEYALL)
KEYWORD (if KEYALL)

KEYWORD(inline KEYC99 | KEYCXX | KEYGNU )
KEYWORD(int KEYALL)
KEYWORD(_ExtInt KEYALL)

* Consumed by clang/include/clang/Parse/Parser.h



https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Basic/TokenKinds.def
https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Parse/Parser.h

Parser

* Handwritten recursive-descent parser

* Tentative parsing by looking at the tokens ahead
* the parser can “peek” ahead and choose the best path without committing
prematurely

* Try to recover from errors as much as possible
* Prevents cascading errors by synchronizing at known recovery points

* Suggest FIX-IT hints
* Analyzes error contexts to suggest potential fixes (e.g., missing semicolons,
unmatched parentheses)
* Aims to improve developer productivity by providing actionable guidance



Sema

* Tightly coupled with parser
* Verifies AST before it is sent out to other clients

* Biggest client of diagnostics subsystem
* Most warnings and errors come out of here
* Sema verifies that the syntax that passes the parsing stage also makes
sense according to the rules of the language

* This involves checking for type errors, ensuring that variables are declared before
use, enforcing scope rules, and more.



AST

AST Nodes

const int

fStmt | if

| QualType |

ReturnStmt | return 1

DeclStmt l

int | BuiltinType

Y

int* | PointerType Type ValueStmt v NamedDecl |
Decl T

n[] | ArrayType

int factorial(...)

Expr |FunctionDech—--'73'{ ValueDec |
<=‘Binary0perator ‘ = K

n ‘ DeclRefExpr

1 | IntegerLiteral

intn |ParmVarDecl |

See full diagram: https://clang.1llvm.org/doxygen/inherits.html

arm

https://llvm.org/devmtg/2019-10/slides/ClangTutorial-Stulova-vanHaastregt.pdf

https://godbolt.org/z/6Wg38MDbPj



https://llvm.org/devmtg/2019-10/slides/ClangTutorial-Stulova-vanHaastregt.pdf
https://godbolt.org/z/6Wq38MbPj

Diagnostics

* Defined in Diagnostic*Kind.td

let CategoryName = "Parse Issue" in {

def err_expected : Error<"expected %8">;
def err_expected_either : Error<"expected %@ or %1">;

def err_expected_after : Error<“expected %1 after %8">;

def err_param_redefinition : Error<"redefinition of parameter %@">;

def warn_method_param_redefinition : Warning<"redefinition of method parameter %@">;

def warn_method_param_declaration : Warning<"redeclaration of method parameter %@">,

InGroup<DuplicateArgDecl>, DefaultIgnore;

* Diagnostic engine tries to render output in human-readable format
* Not always successful, especially in heavily templated code



TableGen language

* The LLVM TableGen language is a domain-specific language used within
the LLVM project framework.

* Key points:
* Data Description Tool
* Code Generation
* Extensible with writing additional code generators
* Language is widely used in LLVM frontend and backend, MLIR and other

components
* Language reference: https://llvm.org/docs/TableGen/ProgRef.html



https://llvm.org/docs/TableGen/ProgRef.html

TableGen example

Here iS the example: // In File: clang/include/clang/Basic/Attr.td
include "clang/Basic/AttrDocs.td"

* code snippet that could be used

def MyAttr : InheritableAttr {

to add new attribUte fOI’ Clang let Documentation = [Undocumented]:
// This specifies the attribute is for
functions.
[[clang::my attr]] - letDSUbjects = SubjectList<[Function],
id f rrorDiag>;
Vol o0l) o // The spelling of the attribute in the source
} code.

let Spellings = [CXX1ll<"clang", "my attr">];

: // The attribute does not take any arguments.
__attribute ((my attr let Args = []:

)) }
void foo() {

}



Lab assignment #0

* Try to build LLVM and Clang from source code and run tests
e Source code: https://github.com/NN-complr-tech/compiler-course-2025
* Follow build instructions: https://llvm.org/docs/CMake.html

* Make sure to run check-clang and check-llvm targets, e.g.
* cmake --build . --target check-clang

e Better done on Linux or macOS. Windows is also OK.
e Goal: learn how to work with basic LLVM infrastructure
* Build may take several hours

* Build usually requires 2GB of RAM per 1 thread. One can reduce number
of threads with -j n flag, where n is a number of threads



https://github.com/NN-complr-tech/compiler-course-2025
https://llvm.org/docs/CMake.html

Next time...

* Look closer at practical usages of clang AST
* Working with AST
* Clang plugins
* Clang-tidy and static analysis



Test

https://forms.gle/sA5VYne7p9UyHdbH9

KakoBa ponb ¢ppoHTeHAa KoMNUnaTopa?

Your answer

Y10 nponcxoanT Ha CTaaun JIieKCU4eCKoro aHanusa?

Your answer

Backup: me@gooddoog.ru



https://forms.gle/sA5VYne7p9UyHdbH9
mailto:me@gooddoog.ru

Extra materials

e An overview of Clang, LLVM Dev 2019 - https://www.youtube.com/watch?v=5kkMpJpIGYU
e What is C++, Chandler Carruth, Titus Winters - https://www.youtube.com/watch?v=LJh5QCV4wDg

e [nagkui A. B. DopManbHble rpaMMaTUKK U 93biKK (RU)
e XonkpodT K., MoTBaHu P., YabMaH [I)X. BBeeHMe B TeopuIo aBTOMATOB, A3bIKOB U BbluncaeHnn (RU)

e Hacking on clang - https://clang.llvm.org/hacking.html

* Lessons in TableGen - https://www.youtube.com/watch?v=45gmF77JEBY

* The Clang AST - a tutorial - https://www.youtube.com/watch?v=VgCkCDFLSsc



https://www.youtube.com/watch?v=5kkMpJpIGYU
https://www.youtube.com/watch?v=LJh5QCV4wDg
https://clang.llvm.org/hacking.html
https://www.youtube.com/watch?v=45gmF77JFBY
https://www.youtube.com/watch?v=VqCkCDFLSsc
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