Compilers 101

Compiler frontend



Previously...

Preprocessing
Lexical analysis

Syntax analysis

Semantic analysis

IR Generation

Middle-end

IR Optimization

Optimization

Code generation



Preprocessor

Preprocessing
Lexical analysis o i
. A
Syntax analysis .
Semantic analysis
IR Generation

IR Optimization

Middle-end

Optimization

Code generation



Preprocessor

The preprocessor is a tool that processes your source code before compilation. It
handles directives for preprocessing, such as #include, #define, and conditional
compilation.

Key Features:

File Inclusion (#include): Incorporates the contents of a file into the source code, typically used
for header files.

Macro Definition (#define): Defines macros, which are snippets of code that are given a name.
Whenever the name is used, it is replaced by the content of the macro.

Conditional Compilation: Allows compiling code selectively based on conditions evaluated by
the preprocessor (#ifdef, #ifndef, #if, #elif, #else, #endif).

Error Directive (#error): Generates an error from a specified location in your code, useful for
flagging incorrect conditions during preprocessing.

Pragma directives (#pragma): Issues special commands to the compiler, such as optimization
levels or code layout suggestions.



Preprocessor example

Input: C/C++ source code
Output: Preprocessed C/C++ source code

00t@32b489cdaéd?: /tmp# clang+ -E preproc.cpp
1 "preproc.cpp"

1 "<built-in>" 1

1 "<built-in>" 3

400 "<built-in>" 3

1 "<command line>" 1

1 "<built-in>" 2

1 "preproc.cpp" 2

#define PI

float area(float r) {
return PI * r * PI

].

P
=
=
=
=
=
=
-

float area(float r) {
return 3.14 * r * r;

}

2/ III ¢
) ' &
& V|
) G

.| https://godbolt.org/z/zaacW80Ghb



https://godbolt.org/z/zaacW8oGb

Why preprocessor is needed?

Importance:

* Simplifies code by allowing file inclusion and macro expansions.

* Enables platform-specific compilation through conditional directives.

* Facilitates code maintenance and readability with organized, reusable
code blocks; enables static polymorphism and other aspects of meta-
programming

Use cases:

* Defining compile-time constants.

* Conditional compilation for cross-platform support.

* Simplifying complex expressions or code snippets for readability and
reusability.



Lexical analysis

Preprocessing
Lexical analysis

Syntax analysis

Semantic analysis

IR Generation

Middle-end

IR Optimization

Optimization

Code generation



Goals of lexical analysis

* Convert physical representation to machine-readable sequence of tokens
* Tokens are the smallest units in the source code, such as keywords, identifiers,
literals, operators, and punctuation symbols (like commas and semicolons).
* Associate each token with a lexeme
e E.g., 42 is an integer literal (token) with the value of 42 (lexeme)

* In essence, a lexeme is the textual string in the source code, while a token is a
structured object that represents a categorized lexeme along with its classification

* Tokens may have extra attributes
* The result will be then used to build AST



SSSSS




Choosing the right tokens

* Depends on your language

* Typically
* Keywords
* Literals
* Punctuation



Formal languages

* Aformal language consists of words whose letters are taken from an

alphabet and are well-formed according to a specific set of rules.
* Examples

e Alphabet X ={a, b}, Language =X* - the set of all words over alphabet
* Alphabet X ={a}, Language = {a}* = {a"} - where n ranges over the natural

numbers and "a"" means "a" repeated n times (this is the set of words
consisting only of the symbol "a");



Regular expressions

* Regular expressions are a family of descriptions that can be used to
capture regular languages

* There’s a set of operations on regular expressions (concatenation,
alternation, Kleene star: concatenation of zero or more strings from the
set)

* There are multiple standards to describe the syntax of regular
expressions



Matching regular expressions

* Regular expressions can be implemented as finite-state machines

* A finite-state machine is an abstract machine that can be in exactly one of
a finite number of states

Push Coin

Push Coin

https://en.wikipedia.org/wiki/Finite-state _machine



https://en.wikipedia.org/wiki/Finite-state_machine

Ambiguity resolution

* Consider we have words do and double. How to assign tokens?

* Rules
* Left-to-right scanning
* Maximal munch - always match the longest occurrence



Lexical challenges

As seen by C++ compiler developers

vector

A;

foo() H{

std::vector<std::vector<




Syntax analysis

Preprocessing
Lexical analysis

Syntax analysis

Semantic analysis

IR Generation

Middle-end

IR Optimization

Optimization

Code generation



Grammars

* A formal grammar is a set of rules that describe how to form strings from
a language’s alphabet that are valid according to the language syntax

* Example:

S - aSb
S > ab
Valid words: ab, aabb, aaabbb, ...



The Chomsky hierarchy Expressiveness

- Recognition complexity

e Recursively enumerable (RE, Type 0) ‘r

* Recursively enumerable subset in the set of all possible words over the
alphabet of the language

e Context-sensitive grammars (CSG, Type 1)

 Left-hand side (LHS) and right-hand side (RHS) may be surrounded by a
context of terminal and nonterminal symbols

e Context-free grammars (CFG, Type 2)
* LHS of each production rule consists only of a single nonterminal symbol

e Regular grammars (Type 3)
* All production rules have at most 1 nonterminal symbol
* The symbol is always either at the start or at the end of rule’s RHS

:

- Restrictions on
Production Rules
- Ease of Parsing

- Determinism



The Chomsky hierarchy (examples) Eupressiveness
- Recognition complexity
e Recursively enumerable (RE, Type 0) T

* These grammars can describe any language that can be recognized
by a Turing machine, including highly complex or undecidable
problems. There are not many practical examples in programming
due to their complexity and generality

e Context-sensitive grammars (CSG, Type 1)

* Ones that can be represented by linear bound automata (some set

of limitations applied on Turing machine)
* Context-free grammars (CFG, Type 2)
* Programming languages

e Regular grammars (Type 3)

* Regular expressions and finite automata can describe these
languages Our focus is set on highlighted types

;

- Restrictions on
Production Rules
- Ease of Parsing

- Determinism



Backus-Naur form

* BNF is a metasyntax notation for CFG, often used to describe
programming languages

* All rules are written in the following format
e <symbol> ::=  expression
* Examples:

e Python grammar is a mixture of EBNF and PEG (parsing expression grammar)
https://docs.python.org/3/reference/grammar.html

* YAML also has BNF description fractions in their spec:
https://vyaml.org/spec/1.2.2/

* JSON has unofficial pure BNF description:

htltgos%://zithub.com/JetBrains/Grammar-Kit/bIob/master/testData/IivePreview/Jso
n.bn

, official spec also has only fractions of BNF https://www.json.org/json-en.html



https://docs.python.org/3/reference/grammar.html
https://yaml.org/spec/1.2.2/
https://github.com/JetBrains/Grammar-Kit/blob/master/testData/livePreview/Json.bnf
https://github.com/JetBrains/Grammar-Kit/blob/master/testData/livePreview/Json.bnf
https://www.json.org/json-en.html

BNF example: grammar for basic arithmetic

expressions
<expressions ::= <terms Arithmetic expressions conforming
| <expression> "+" <term> .
| <expression> "-" <term> given BNF grammar:
<term> 1= <factor>
| <term> "*" <factor>
| <term> "/" <factor>
<factor> : 1= <number> ® 42
| "(" <expression> ")"
<number> 1= <digit> ® 3+5
| <digit> <number>
<digit> : := IIOII I II1II | II2II | II3II I ‘ 3+5*2
II4II *
| II5II | II6II | II7II | II8II | . (3+5 ) 2

o ® (1+2)*(3-4)/5



From concrete to abstract trees

* As a result of parsing, you will get a parse tree, which is also a concrete
syntax tree

* |t contains all the small details about textual representation

* Abstract syntax tree omits those irrelevant details
* Parenthesis, semicolons, commas...

* To get an abstract tree, you recursively traverse the parsing tree



Different types of parsing

* Top-down parsing
* Beginning with the start symbol, try to guess the productions to apply to end up
at the user’s program
* Bottom-up parsing

* Beginning with user’s program, try to apply productions in reverse to convert the
program back into the start symbol



LL(k) parsers

* Left-to-right, leftmost derivation

* Top-down parser for context-free languages
* k tokens of lookahead

* Most popular - LL(1) parsers

* Will not be covered in details by this course



Syntax challenges

As seen by C++ compiler developers

vector
A;
fool( A) H

std:: vector< > vecl(A);




A word of advice

* Do not re-invent the wheel!
* This problem has been solved before

* Try to use existing grammar description
formats and use parser generators



https://www.ictworks.org/2015/07/10/stop-reinventing-the-flat-tire-with-custom-software-development/
https://www.ictworks.org/2015/07/10/stop-reinventing-the-flat-tire-with-custom-software-development/

Semantic analysis

Preprocessing
(I EREWSES

Syntax analysis

Semantic analysis

IR Generation

Middle-end

IR Optimization

Code generation

Optimization



Goals of semantic analysis

* Ensure that the program has a well-defined meaning
* Variables and symbols are defined before they are used
* Expressions have the right types

* Gather useful information for later stages



Validity vs correctness

* Valid syntax does not mean your program is correct
* The following sample is only correct if x is 2

square( x) H{

.




Symbol tables

* Basically, a hash map where key is symbol name and value is its graph
node

* Except that it is scoped

foo( a) {

std::cout << a << ”"H'l”;

* Example implementation:
https://llvm.org/doxygen/classlivm 1 1ScopedHashTable.html



https://llvm.org/doxygen/classllvm_1_1ScopedHashTable.html

OOP challenges

* Classes may have parents
* In that case we must look up symbol in base class symbol tables as well
* Actual implementations may be different for particular languages



Multiple inheritance

* Some languages allow multiple base classes
* In that case we must look up the symbol in each base class
* Again, rules depend on language design



IR Generation

Preprocessing
(I EREWSES

Syntax analysis

Semantic analysis

IR Generation

Middle-end

IR Optimization

Optimization

Code generation



IR generation

* Consumes AST
* Produces LLVM IR

* more on that
on lecture 04

%3
34

store i32

call void
store i32
call void
%5 load
%6 load

attributes #0
attributes #1

noundef i32 @sum(int, int)(i32 noundef %0, i32 noundef %1) #0 !dbg !10 {

alloca 132, 4
alloca 132, 4

%0, ptr %3, )

@llvm.dbg.declare(metadata ptr %3, metadata !16, metadata !DIExpression()), !dbg !17
%1, ptr %4, 4

@llvm.dbg.declare(metadata ptr %4, metadata !18, metadata !DIExpression()), !dbg !19
i32, ptr %3, 4, !dbg !20

i32, ptr %4, 4, !dbg !21

%7 = add nsw 132 %5, %6, !dbg !22
ret i32 %7, !dbg 123

void @llvm.dbg.declare(metadata, metadata, metadata) #l

{ mustprogress "frame-pointer"="all" "min-legal-vector-width"="0"

{ nocallback nofree nosync willreturn memory ( ) }

"no-trapping-math"="




Overview of Clang



Simplified compiler flow

Preprocessor
& lexer

Compiler gud Linker




Clang driver

* Clang supports multiple compatibility modes: with GCC and MSVC

* The part that parses options and issues compile commands is called
driver

* Qutput can be seen with - ### flag

root@32b489cdasd?: /tmp# clang+ -## sample.cpp
clang version 15.8.0 (https://github.com/intel/llvm 551c87bb5025b5740327e94cd30135F6aff7b81e)
Target: x86_64-unknown-linux-gnu
Thread model: posix
Installeddir: fopt/sycl/bin
"fopt/sycl/bin/clang-15" "-ccl" "-triple" "x86_64-unknown-linux-gnu” "-emit-obj" r mrelax-relocations™ "-disable-free" "-clear-ast-before-backend" "-main-file-name” "sample.cpp" "-mrelocation-model" "static® "-mframe-pointer=all" "-fmath-errn
ffp-contract= "-fno-rounding-math" "-mconstructor-aliases" "-funwind-tables= 86-64" "-tune-cpu" "generic" 1lvm" "-treat-scalable-fixed-error-as-warning" "-debugger-tuning=gdb" "-fcoverage-compilation-dir=/tmp" "-resource-dir" "/opt/sy

b/clang/15.0.8" "-internal-isystem" "/usr/lib/gcc/x86_64-Linux-gnu/$/ ../ ../ ../ .. [include/c+ /9" "-internal-isystem” "/usr/lib/gcc/x86_64-1inux-gnu/9/../../ ../ ../include/x86_64-1Linux-gnu/c+/9" "-internal-isystem"” "/usr/lib/gcc/xB6_64-1inux-gnu/9/ ../ ../..[../inclu
defc+/9/backward” "-internal-isystem" "/opt/sycl/lib/clang/15.0.0/include” "-internal-isystem” "/usr/local/include” "-internal-isystem" "/usr/lib/gcc/x86_é4-Linux-gnu/9/../ ../ ../ .. /x86_64-1inux-gnu/include” "-internal-externc-isystem" "/usr/include/x86_64-1linux-
gnu™ "-internal-externc-isystem" "/include" "-internal-externc-isystem" "/usr/include" "-fdeprecated-macro" "-fdebug-compilation-dir=/tmp" "-ferror-1imit" 19" "-fgnuc-version fcxx-exceptions" "-fexceptions" "-fcolor-diagnostics" "-faddrsig® "-D__GCC_HAV
SM=1" "-o" "/tmp/sample-282fcc.o" "-x" "c+" "sample.cpp”
Z" "relro" "--hash-style=gnu” -eh-frame-hdr" 1" "elf_x86_64" "-dynamic-linker" "/1libé4/1d-linux-x86-64.s50.2" "-0" "a.out™ "/Lib/xBé_é4-linux-gnu/crtl.o” "/1ib/x86_64-1inu; nu/crti.o” "fusr/lib/gcc/x86_64-1inux-gnu/9/crtbegin.o” ™ usr/1lib/g
-L/usr/1lib/g x86_64-1inux-gnu/9/ ../ .. 1L " "-L/1lib/x86_é4-Linux-gnu" "-L/1lib/../1ibé4" "-L/usr/1ib/x86_64-1inux-gnu" “"-L/usr/lib/..[libé4" "-L/opt/sycl/bin/../1ib" "-L/1ib" "-L/usr/lil "/tmp/sample-282fcc.o" "-lstdc+" "-1m" "-1
ce_s" "-lgec" "/usr/lib/gcc/xB6_64-1inux-gnu/9/crtend.o" "/1ib/x86_64-1inux-gnu/crtn.o"

https://godbolt.org/z/rWhanzhT7



https://godbolt.org/z/rWhqnzhT7

Preprocessor

GCC:
gcc -E 1n.cpp

GNU C compiler preprocessor as a standalone binary. You can use it
directly to preprocess C files.

cCpp 1n.cpp in.1

Clang:
clang -E 1in.cpp

https://godbolt.org/z/5nzzbE15T



https://godbolt.org/z/5nzzbE15T

L exer

* Starts right after preprocessor

* Flags
* -c - compile only
* -Xclang -dump-tokens - bypass driver and pass -dump-tokens to FE

root@32b489cda6d9: /tmp# clang+ -c -Xclang -dump-tokens sample.cpp
int 'int’ [StartOfLine] Loc=<sample.cpp:1:1>

identifier 'square’ [LeadingSpace] Loc=<sample.cpp:1:5>
1_paren '(' Loc=<sample.cpp:1:11>

int 'int’ Loc=<sample.cpp:1:12>

identifier 'x' [LeadingSpace] Loc=<sample.cpp:1:16>

r_paren ')’ Loc=<sample.cpp:1:17>

1_brace '{' [LeadingSpace] Loc=<sample.cpp:1:19>

return 'return' [StartOfLine] [LeadingSpacel] Loc=<sample.cpp:2:3>
identifier 'x' [LeadingSpace] Loc=<sample.cpp:2:10>

star 'x' [LeadingSpace] Loc=<sample.cpp:2:12>

identifier 'x' [LeadingSpace] Loc=<sample.cpp:2:14>

semi ';' Loc=<sample.cpp:2:15>

r_brace '}’ [Start0flLine] Loc=<sample.cpp:3:1>

eof "' Loc=<sample.cpp:3:2>

int square(int x) {

return x * XI

}

https://godbolt.org/z/7bPxaoc3Pz



https://godbolt.org/z/7bPxao3Pz

Lexer internals

e Token kinds defined in clang/include/clang/Basic/TokenKinds.def

KEYWORD(float KEYALL)
KEYWORD (for KEYALL)
KEYWORD (goto KEYALL)
KEYWORD (if KEYALL)

KEYWORD(inline KEYC99 | KEYCXX | KEYGNU )
KEYWORD(int KEYALL)
KEYWORD(_ExtInt KEYALL)

* Consumed by clang/include/clang/Parse/Parser.h



https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Basic/TokenKinds.def
https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Parse/Parser.h

Parser

* Handwritten recursive-descent parser

* Tentative parsing by looking at the tokens ahead
* the parser can “peek” ahead and choose the best path without committing
prematurely

* Try to recover from errors as much as possible
* Prevents cascading errors by synchronizing at known recovery points

* Suggest FIX-IT hints
* Analyzes error contexts to suggest potential fixes (e.g., missing semicolons,
unmatched parentheses)
* Aims to improve developer productivity by providing actionable guidance



Sema

* Tightly coupled with parser
* Verifies AST before it is sent out to other clients

* Biggest client of diagnostics subsystem
* Most warnings and errors come out of here
* Sema verifies that the syntax that passes the parsing stage also makes
sense according to the rules of the language

* This involves checking for type errors, ensuring that variables are declared before
use, enforcing scope rules, and more.



AST

AST Nodes

const int

fStmt | if

| QualType |

ReturnStmt | return 1

DeclStmt l

int | BuiltinType

Y

int* | PointerType Type ValueStmt v NamedDecl |
Decl T

n[] | ArrayType

int factorial(...)

Expr |FunctionDech—--'73'{ ValueDec |
<=‘Binary0perator ‘ = K

n ‘ DeclRefExpr

1 | IntegerLiteral

intn |ParmVarDecl |

See full diagram: https://clang.1llvm.org/doxygen/inherits.html

arm

https://llvm.org/devmtg/2019-10/slides/ClangTutorial-Stulova-vanHaastregt.pdf

https://godbolt.org/z/6Wg38MDbPj



https://llvm.org/devmtg/2019-10/slides/ClangTutorial-Stulova-vanHaastregt.pdf
https://godbolt.org/z/6Wq38MbPj

Diagnostics

* Defined in Diagnostic*Kind.td

let CategoryName = "Parse Issue" in {

def err_expected : Error<"expected %8">;
def err_expected_either : Error<"expected %@ or %1">;

def err_expected_after : Error<“expected %1 after %8">;

def err_param_redefinition : Error<"redefinition of parameter %@">;

def warn_method_param_redefinition : Warning<"redefinition of method parameter %@">;

def warn_method_param_declaration : Warning<"redeclaration of method parameter %@">,

InGroup<DuplicateArgDecl>, DefaultIgnore;

* Diagnostic engine tries to render output in human-readable format
* Not always successful, especially in heavily templated code



TableGen language

* The LLVM TableGen language is a domain-specific language used within
the LLVM project framework.

* Key points:
* Data Description Tool
* Code Generation
* Extensible with writing additional code generators
* Language is widely used in LLVM frontend and backend, MLIR and other

components
* Language reference: https://llvm.org/docs/TableGen/ProgRef.html



https://llvm.org/docs/TableGen/ProgRef.html

TableGen example

Here iS the example: // In File: clang/include/clang/Basic/Attr.td
include "clang/Basic/AttrDocs.td"

* code snippet that could be used

def MyAttr : InheritableAttr {

to add new attribUte fOI’ Clang let Documentation = [Undocumented]:
// This specifies the attribute is for
functions.
[[clang::my attr]] - letDSUbjects = SubjectList<[Function],
id f rrorDiag>;
Vol o0l) o // The spelling of the attribute in the source
} code.

let Spellings = [CXX1ll<"clang", "my attr">];

: // The attribute does not take any arguments.
__attribute ((my attr let Args = []:

)) }
void foo() {

}



Lab assignment #0

* Try to build LLVM and Clang from source code and run tests
e Source code: https://github.com/NN-complr-tech/compiler-course-2025
* Follow build instructions: https://llvm.org/docs/CMake.html

* Make sure to run check-clang and check-llvm targets, e.g.
* cmake --build . --target check-clang

e Better done on Linux or macOS. Windows is also OK.
e Goal: learn how to work with basic LLVM infrastructure
* Build may take several hours

* Build usually requires 2GB of RAM per 1 thread. One can reduce number
of threads with -j n flag, where n is a number of threads



https://github.com/NN-complr-tech/compiler-course-2025
https://llvm.org/docs/CMake.html

Next time...

* Look closer at practical usages of clang AST
* Working with AST
* Clang plugins
* Clang-tidy and static analysis



Test

https://forms.gle/sA5VYne7p9UyHdbH9

KakoBa ponb ¢ppoHTeHAa KoMNUnaTopa?

Your answer

Y10 nponcxoanT Ha CTaaun JIieKCU4eCKoro aHanusa?

Your answer

Backup: me@gooddoog.ru



https://forms.gle/sA5VYne7p9UyHdbH9
mailto:me@gooddoog.ru

Extra materials

e An overview of Clang, LLVM Dev 2019 - https://www.youtube.com/watch?v=5kkMpJpIGYU
e What is C++, Chandler Carruth, Titus Winters - https://www.youtube.com/watch?v=LJh5QCV4wDg

e [nagkui A. B. DopManbHble rpaMMaTUKK U 93biKK (RU)
e XonkpodT K., MoTBaHu P., YabMaH [I)X. BBeeHMe B TeopuIo aBTOMATOB, A3bIKOB U BbluncaeHnn (RU)

e Hacking on clang - https://clang.llvm.org/hacking.html

* Lessons in TableGen - https://www.youtube.com/watch?v=45gmF77JEBY

* The Clang AST - a tutorial - https://www.youtube.com/watch?v=VgCkCDFLSsc



https://www.youtube.com/watch?v=5kkMpJpIGYU
https://www.youtube.com/watch?v=LJh5QCV4wDg
https://clang.llvm.org/hacking.html
https://www.youtube.com/watch?v=45gmF77JFBY
https://www.youtube.com/watch?v=VqCkCDFLSsc

51



	Compilers 101
	Previously…
	Preprocessor
	Preprocessor (2)
	Preprocessor example
	Why preprocessor is needed?
	Lexical analysis
	Goals of lexical analysis
	Basics
	Choosing the right tokens
	Formal languages
	Regular expressions
	Matching regular expressions
	Ambiguity resolution
	Lexical challenges
	Syntax analysis
	Grammars
	The Chomsky hierarchy
	The Chomsky hierarchy (examples)
	Backus–Naur form
	BNF example: grammar for basic arithmetic expressions
	From concrete to abstract trees
	Different types of parsing
	LL(k) parsers
	Syntax challenges
	A word of advice
	Semantic analysis
	Goals of semantic analysis
	Validity vs correctness
	Symbol tables
	OOP challenges
	Multiple inheritance
	IR Generation
	IR generation
	Overview of Clang
	Simplified compiler flow
	Clang driver
	Preprocessor (3)
	Lexer
	Lexer internals
	Parser
	Sema
	AST
	Diagnostics
	TableGen language
	TableGen example
	Lab assignment #0
	Next time…
	Test
	Extra materials
	Slide 51

