
Compilers 101
Compiler frontend

2

Previously…
Preprocessing

Lexical analysis

Syntax analysis

Semantic analysis

IR Generation

IR Optimization

Code generation

Optimization

Fronten
d

Middle-end

Backend

3

Preprocessor
Preprocessing

Lexical analysis

Syntax analysis

Semantic analysis

IR Generation

IR Optimization

Fronten
d

Middle-end

Backend
Code generation

Optimization

4

Preprocessor
The preprocessor is a tool that processes your source code before compilation. It
handles directives for preprocessing, such as #include, #define, and conditional
compilation.

Key Features:
• File Inclusion (#include): Incorporates the contents of a file into the source code, typically used

for header files.
• Macro Definition (#define): Defines macros, which are snippets of code that are given a name.

Whenever the name is used, it is replaced by the content of the macro.
• Conditional Compilation: Allows compiling code selectively based on conditions evaluated by

the preprocessor (#ifdef, #ifndef, #if, #elif, #else, #endif).
• Error Directive (#error): Generates an error from a specified location in your code, useful for

flagging incorrect conditions during preprocessing.
• Pragma directives (#pragma): Issues special commands to the compiler, such as optimization

levels or code layout suggestions.

5

Preprocessor example

Input: C/C++ source code
Output: Preprocessed C/C++ source code

https://godbolt.org/z/zaacW8oGb

https://godbolt.org/z/zaacW8oGb

6

Why preprocessor is needed?

Importance:
• Simplifies code by allowing file inclusion and macro expansions.
• Enables platform-specific compilation through conditional directives.
• Facilitates code maintenance and readability with organized, reusable

code blocks; enables static polymorphism and other aspects of meta-
programming

Use cases:
• Defining compile-time constants.
• Conditional compilation for cross-platform support.
• Simplifying complex expressions or code snippets for readability and

reusability.

7

Lexical analysis
Preprocessing

Lexical analysis

Syntax analysis

Semantic analysis

IR Generation

IR Optimization

Fronten
d

Middle-end

Backend
Code generation

Optimization

8

Goals of lexical analysis

• Convert physical representation to machine-readable sequence of tokens
• Tokens are the smallest units in the source code, such as keywords, identifiers,

literals, operators, and punctuation symbols (like commas and semicolons).

• Associate each token with a lexeme
• E.g., 42 is an integer literal (token) with the value of 42 (lexeme)
• In essence, a lexeme is the textual string in the source code, while a token is a

structured object that represents a categorized lexeme along with its classification

• Tokens may have extra attributes
• The result will be then used to build AST

9

Basics

for (int i = 0; i < 42; i+
+)

for L_par type(int) ident(i) eq int
lit(0) semicol ident(i) less int

lit(42) semicol ident(i) inc R_par

10

Choosing the right tokens

• Depends on your language
• Typically

• Keywords
• Literals
• Punctuation

11

Formal languages

• A formal language consists of words whose letters are taken from an
alphabet and are well-formed according to a specific set of rules.

• Examples
• Alphabet Σ = {a, b}, Language = Σ* - the set of all words over alphabet
• Alphabet Σ = {a}, Language = {a}* = {an} - where n ranges over the natural

numbers and "an" means "a" repeated n times (this is the set of words
consisting only of the symbol "a");

12

Regular expressions

• Regular expressions are a family of descriptions that can be used to
capture regular languages

• There’s a set of operations on regular expressions (concatenation,
alternation, Kleene star: concatenation of zero or more strings from the
set)

• There are multiple standards to describe the syntax of regular
expressions

13

Matching regular expressions

• Regular expressions can be implemented as finite-state machines
• A finite-state machine is an abstract machine that can be in exactly one of

a finite number of states

https://en.wikipedia.org/wiki/Finite-state_machine

https://en.wikipedia.org/wiki/Finite-state_machine

14

Ambiguity resolution

• Consider we have words do and double. How to assign tokens?
• Rules

• Left-to-right scanning
• Maximal munch – always match the longest occurrence

15

Lexical challenges

As seen by C++ compiler developers

16

Syntax analysis
Preprocessing

Lexical analysis

Syntax analysis

Semantic analysis

IR Generation

IR Optimization

Fronten
d

Middle-end

Backend
Code generation

Optimization

17

Grammars

• A formal grammar is a set of rules that describe how to form strings from
a language’s alphabet that are valid according to the language syntax

• Example:

18

The Chomsky hierarchy

• Recursively enumerable (RE, Type 0)
• Recursively enumerable subset in the set of all possible words over the

alphabet of the language

• Context-sensitive grammars (CSG, Type 1)
• Left-hand side (LHS) and right-hand side (RHS) may be surrounded by a

context of terminal and nonterminal symbols

• Context-free grammars (CFG, Type 2)
• LHS of each production rule consists only of a single nonterminal symbol

• Regular grammars (Type 3)
• All production rules have at most 1 nonterminal symbol
• The symbol is always either at the start or at the end of rule’s RHS

- Expressiveness
- Recognition complexity

- Restrictions on
Production Rules
- Ease of Parsing

- Determinism

19

The Chomsky hierarchy (examples)

• Recursively enumerable (RE, Type 0)
• These grammars can describe any language that can be recognized

by a Turing machine, including highly complex or undecidable
problems. There are not many practical examples in programming
due to their complexity and generality

• Context-sensitive grammars (CSG, Type 1)
• Ones that can be represented by linear bound automata (some set

of limitations applied on Turing machine)

• Context-free grammars (CFG, Type 2)
• Programming languages

• Regular grammars (Type 3)
• Regular expressions and finite automata can describe these

languages

- Expressiveness
- Recognition complexity

- Restrictions on
Production Rules
- Ease of Parsing

- DeterminismOur focus is set on highlighted types

20

Backus–Naur form

• BNF is a metasyntax notation for CFG, often used to describe
programming languages

• All rules are written in the following format
• <symbol> ::= __expression__

• Examples:
• Python grammar is a mixture of EBNF and PEG (parsing expression grammar)

https://docs.python.org/3/reference/grammar.html
• YAML also has BNF description fractions in their spec:

https://yaml.org/spec/1.2.2/
• JSON has unofficial pure BNF description:

https://github.com/JetBrains/Grammar-Kit/blob/master/testData/livePreview/Jso
n.bnf
, official spec also has only fractions of BNF https://www.json.org/json-en.html

https://docs.python.org/3/reference/grammar.html
https://yaml.org/spec/1.2.2/
https://github.com/JetBrains/Grammar-Kit/blob/master/testData/livePreview/Json.bnf
https://github.com/JetBrains/Grammar-Kit/blob/master/testData/livePreview/Json.bnf
https://www.json.org/json-en.html

21

BNF example: grammar for basic arithmetic
expressions
<expression> ::= <term>
 | <expression> "+" <term>
 | <expression> "-" <term>
<term> ::= <factor>
 | <term> "*" <factor>
 | <term> "/" <factor>
<factor> ::= <number>
 | "(" <expression> ")"
<number> ::= <digit>
 | <digit> <number>
<digit> ::= "0" | "1" | "2" | "3" |
"4"
 | "5" | "6" | "7" | "8" |
"9"

Arithmetic expressions conforming
given BNF grammar:

● 42
● 3+5
● 3+5*2
● (3+5)*2
● (1+2)*(3-4)/5

22

From concrete to abstract trees

• As a result of parsing, you will get a parse tree, which is also a concrete
syntax tree

• It contains all the small details about textual representation

• Abstract syntax tree omits those irrelevant details
• Parenthesis, semicolons, commas…

• To get an abstract tree, you recursively traverse the parsing tree

23

Different types of parsing

• Top-down parsing
• Beginning with the start symbol, try to guess the productions to apply to end up

at the user’s program

• Bottom-up parsing
• Beginning with user’s program, try to apply productions in reverse to convert the

program back into the start symbol

24

LL(k) parsers

• Left-to-right, leftmost derivation
• Top-down parser for context-free languages
• k tokens of lookahead
• Most popular – LL(1) parsers
• Will not be covered in details by this course

25

Syntax challenges

As seen by C++ compiler developers

26

A word of advice

• Do not re-invent the wheel!
• This problem has been solved before
• Try to use existing grammar description

formats and use parser generators

Pic:
https://www.ictworks.org/2015/07/10/stop-reinventing-the-flat-tire-with
-custom-software-development/

https://www.ictworks.org/2015/07/10/stop-reinventing-the-flat-tire-with-custom-software-development/
https://www.ictworks.org/2015/07/10/stop-reinventing-the-flat-tire-with-custom-software-development/

27

Semantic analysis
Preprocessing

Lexical analysis

Syntax analysis

Semantic analysis

IR Generation

IR Optimization

Code generation

Optimization

Fronten
d

Middle-end

Backend

28

Goals of semantic analysis

• Ensure that the program has a well-defined meaning
• Variables and symbols are defined before they are used
• Expressions have the right types
• …

• Gather useful information for later stages

29

Validity vs correctness

• Valid syntax does not mean your program is correct
• The following sample is only correct if x is 2

30

Symbol tables

• Basically, a hash map where key is symbol name and value is its graph
node

• Except that it is scoped

• Example implementation:
https://llvm.org/doxygen/classllvm_1_1ScopedHashTable.html

https://llvm.org/doxygen/classllvm_1_1ScopedHashTable.html

31

OOP challenges

• Classes may have parents
• In that case we must look up symbol in base class symbol tables as well
• Actual implementations may be different for particular languages

32

Multiple inheritance

• Some languages allow multiple base classes
• In that case we must look up the symbol in each base class
• Again, rules depend on language design

33

IR Generation
Preprocessing

Lexical analysis

Syntax analysis

Semantic analysis

IR Generation

IR Optimization

Fronten
d

Middle-end

Backend
Code generation

Optimization

34

IR generation

• Consumes AST
• Produces LLVM IR

• more on that
on lecture 04

35

Overview of Clang

36

Simplified compiler flow

SRC Driver Preprocessor
& lexer Parser Sema CodeGen Compiler Linker

Tokens AST IR

37

Clang driver

• Clang supports multiple compatibility modes: with GCC and MSVC
• The part that parses options and issues compile commands is called

driver
• Output can be seen with -### flag

https://godbolt.org/z/rWhqnzhT7

https://godbolt.org/z/rWhqnzhT7

38

Preprocessor

GCC:
gcc -E in.cpp
GNU C compiler preprocessor as a standalone binary. You can use it
directly to preprocess C files.
cpp in.cpp in.i

Clang:
clang -E in.cpp

https://godbolt.org/z/5nzzbE15T

https://godbolt.org/z/5nzzbE15T

39

Lexer

• Starts right after preprocessor
• Flags

• -c – compile only
• -Xclang -dump-tokens – bypass driver and pass -dump-tokens to FE

https://godbolt.org/z/7bPxao3Pz

https://godbolt.org/z/7bPxao3Pz

40

Lexer internals

• Token kinds defined in clang/include/clang/Basic/TokenKinds.def

• Consumed by clang/include/clang/Parse/Parser.h

https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Basic/TokenKinds.def
https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Parse/Parser.h

41

Parser

• Handwritten recursive-descent parser
• Tentative parsing by looking at the tokens ahead

• the parser can “peek” ahead and choose the best path without committing
prematurely

• Try to recover from errors as much as possible
• Prevents cascading errors by synchronizing at known recovery points

• Suggest FIX-IT hints
• Analyzes error contexts to suggest potential fixes (e.g., missing semicolons,

unmatched parentheses)
• Aims to improve developer productivity by providing actionable guidance

42

Sema

• Tightly coupled with parser
• Verifies AST before it is sent out to other clients
• Biggest client of diagnostics subsystem

• Most warnings and errors come out of here
• Sema verifies that the syntax that passes the parsing stage also makes

sense according to the rules of the language
• This involves checking for type errors, ensuring that variables are declared before

use, enforcing scope rules, and more.

43

AST

https://llvm.org/devmtg/2019-10/slides/ClangTutorial-Stulova-vanHaastregt.pdf

https://godbolt.org/z/6Wq38MbPj

https://llvm.org/devmtg/2019-10/slides/ClangTutorial-Stulova-vanHaastregt.pdf
https://godbolt.org/z/6Wq38MbPj

44

Diagnostics

• Defined in Diagnostic*Kind.td

• Diagnostic engine tries to render output in human-readable format
• Not always successful, especially in heavily templated code

45

TableGen language

• The LLVM TableGen language is a domain-specific language used within
the LLVM project framework.

• Key points:
• Data Description Tool
• Code Generation
• Extensible with writing additional code generators
• Language is widely used in LLVM frontend and backend, MLIR and other

components
• Language reference: https://llvm.org/docs/TableGen/ProgRef.html

https://llvm.org/docs/TableGen/ProgRef.html

46

TableGen example

Here is the example:
• code snippet that could be used

to add new attribute for clang

// In File: clang/include/clang/Basic/Attr.td

include "clang/Basic/AttrDocs.td"

def MyAttr : InheritableAttr {
 let Documentation = [Undocumented];
 // This specifies the attribute is for
functions.
 let Subjects = SubjectList<[Function],
ErrorDiag>;
 // The spelling of the attribute in the source
code.
 let Spellings = [CXX11<"clang", "my_attr">];
 // The attribute does not take any arguments.
 let Args = [];
}

[[clang::my_attr]]
void foo() {

}

__attribute__((my_attr
))
void foo() {

}

47

Lab assignment #0

• Try to build LLVM and Clang from source code and run tests
• Source code: https://github.com/NN-complr-tech/compiler-course-2025
• Follow build instructions: https://llvm.org/docs/CMake.html
• Make sure to run check-clang and check-llvm targets, e.g.

• cmake --build . --target check-clang

• Better done on Linux or macOS. Windows is also OK.
• Goal: learn how to work with basic LLVM infrastructure
• Build may take several hours
• Build usually requires 2GB of RAM per 1 thread. One can reduce number

of threads with -j n flag, where n is a number of threads

https://github.com/NN-complr-tech/compiler-course-2025
https://llvm.org/docs/CMake.html

48

Next time…

• Look closer at practical usages of clang AST
• Working with AST
• Clang plugins
• Clang-tidy and static analysis

49

Test

https://forms.gle/sA5VYne7p9UyHdbH9

Backup: me@gooddoog.ru

https://forms.gle/sA5VYne7p9UyHdbH9
mailto:me@gooddoog.ru

50

Extra materials
• An overview of Clang, LLVM Dev 2019 - https://www.youtube.com/watch?v=5kkMpJpIGYU

• What is C++, Chandler Carruth, Titus Winters - https://www.youtube.com/watch?v=LJh5QCV4wDg

• Гладкий А. В. Формальные грамматики и языки (RU)

• Хопкрофт Дж., Мотвани Р., Ульман Дж. Введение в теорию автоматов, языков и вычислений (RU)

• Hacking on clang - https://clang.llvm.org/hacking.html

• Lessons in TableGen - https://www.youtube.com/watch?v=45gmF77JFBY

• The Clang AST - a tutorial - https://www.youtube.com/watch?v=VqCkCDFLSsc

https://www.youtube.com/watch?v=5kkMpJpIGYU
https://www.youtube.com/watch?v=LJh5QCV4wDg
https://clang.llvm.org/hacking.html
https://www.youtube.com/watch?v=45gmF77JFBY
https://www.youtube.com/watch?v=VqCkCDFLSsc

51

	Compilers 101
	Previously…
	Preprocessor
	Preprocessor (2)
	Preprocessor example
	Why preprocessor is needed?
	Lexical analysis
	Goals of lexical analysis
	Basics
	Choosing the right tokens
	Formal languages
	Regular expressions
	Matching regular expressions
	Ambiguity resolution
	Lexical challenges
	Syntax analysis
	Grammars
	The Chomsky hierarchy
	The Chomsky hierarchy (examples)
	Backus–Naur form
	BNF example: grammar for basic arithmetic expressions
	From concrete to abstract trees
	Different types of parsing
	LL(k) parsers
	Syntax challenges
	A word of advice
	Semantic analysis
	Goals of semantic analysis
	Validity vs correctness
	Symbol tables
	OOP challenges
	Multiple inheritance
	IR Generation
	IR generation
	Overview of Clang
	Simplified compiler flow
	Clang driver
	Preprocessor (3)
	Lexer
	Lexer internals
	Parser
	Sema
	AST
	Diagnostics
	TableGen language
	TableGen example
	Lab assignment #0
	Next time…
	Test
	Extra materials
	Slide 51

