
Compilers 101
Optimizations – Part 1

2

Previously…

Preprocessing
Lexical analysis
Syntax analysis

Semantic analysis

IR Generation

IR Optimization

Code generation

Optimization

Fronten
d

Middle-end

Backend

3

Today

▪PHI nodes
▪LLVM Passes
▪Local optimizations

4

Memory SSA

https://godbolt.org/z/x6bf1fxxv

https://godbolt.org/z/x6bf1fxxv

5

What are PHI nodes?

PHI node is a special kind of
instruction in LLVM IR

6

Why PHI nodes?
▪PHI nodes are essential for representing variable values that

depend on the control flow in LLVM IR
▪They solve the problem of SSA (Static Single Assignment) form

constraints, where each variable is assigned exactly once but used
multiple times in different control flow paths.
▪PHI nodes effectively resolve the issue of variable assignments in

loops and conditional branches, where the exact value of a
variable can depend on the path taken through the program.

7

Example

PHI nodes Memory SSA

Original C++ code
with condition

8

Working with LLVM IR

▪LLVM framework provides means to process LLVM IR, called
Passes

▪We usually want to work with particular abstractions in IR:
functions, loops, etc

• LLVM provides that too

▪To run multiple passes on IR, you need a pass manager

9

Pass

A pass in a compiler refers to a complete traversal of the source code
or intermediate representation (IR) to perform specific processing
tasks, such as lexical analysis, syntax analysis, optimization, or code
generation.

https://egorbo.com/opt-for-llvm-guide.html

https://egorbo.com/opt-for-llvm-guide.html

10

LLVM pass

▪Kinds of passes:

• Analysis

• Examples:

• Loop Analysis (loop-analysis): This group of analysis passes provides detailed information about
loops, including their nesting structure, induction variables, and trip counts.

• Basic Alias Analysis (basicaa): This pass provides a very basic Alias Analysis implementation that
can answer alias queries based on simple pointer analysis. It's a foundation for more complex
analyses.

• Transformation

• Utility - for utility functions like printing the IR to a file for debugging purposes

11

Pass types

Passes are split by types:

▪ModulePass
• operates on the whole compilation unit
• use case: optimizations or analyses that need to consider multiple

functions at once or need to deal with global variables

▪FunctionPass
• operates on one function
• optimizations or analyses that are local to a function, such as dead code

elimination, constant propagation, or loop optimizations. These passes can
run independently on each function, making them suitable for parallel
execution.

12

Other types of passes
▪LoopPass

• Specifically designed to operate on loops within a function. A LoopPass runs on
each loop in a function, making it suitable for loop transformations and analysis.
• Examples: loop unrolling, vectorization, or loop-invariant code motion.

▪CallGraphSCCPass
• Operates on strongly connected components (SCCs) in the call graph. An SCC is

a subset of functions that are mutually recursive. This pass allows optimizations
that need to consider recursion and how functions interrelate more deeply than
simple function-to-function calls.
• In practice used in AMD passes

▪RegionPass
• Targets a control-flow region within a function. A region can be a single basic

block up to the entire function. Region passes allow for optimizations and
analyses on these intermediate structures, which can be particularly useful for
certain kinds of control flow and data flow optimizations.
• Used in some control flow graph passes

13

Legacy vs new pass managers (PM)

▪Legacy PM has been deprecated

▪Note:

• There are a lot of old information relative to old pass manager on the Internet

• Consider reading carefully

• Official docs are still based on the legacy PM in some places

▪Good entrypoint for reading the docs:

• https://llvm.org/docs/NewPassManager.html

https://llvm.org/docs/NewPassManager.html

14

Analysis vs Transformation
▪Passes run on some piece of IR (module, function, etc)

▪Analysis passes produce results lazily

• Passes need to request the result first

• Results are cached

▪Transformation passes modify the IR

15

Writing a pass

struct HelloWorld : llvm::PassInfoMixin<HelloWorld>
{

 llvm::PreservedAnalyses run(llvm::Function &F,

 llvm::FunctionAnalysisManager
&FAM) {

 llvm::dbgs() << F.getName() << “\n”;

 return llvm::PreservedAnalyses::all();

 }

}

16

Registering a pass

ModulePassManager MPM;

FunctionPassManager FPM;

FPM.addPass(HelloWorld());

MPM.addPass(createModuleToFunctionPassAdaptor(std::
move(FPM)));

17

Why optimizing IR?

▪IR generation produces a lot of redundant code

▪Programmers are lazy

18

Challenges

▪Optimizer should not change observable behavior

▪Optimizations should not regress code performance

▪Optimized code must be of reasonable size

▪Almost all interesting optimizations are NP-hard

19

Optimization targets

▪Runtime – make programs run faster

▪Memory usage – make programs use less memory

▪Code size – produce smaller programs

▪Power consumption – select instructions that use less power at the
cost of performance

▪…

20

-O<level> clang flags (1)
▪-O0, -O1, -O2, -O3

• -O0: This level applies no optimizations; it aims for the fastest compilation time.
• -O1: This level applies a minimal set of optimizations that reduce code size and

execution time without significantly increasing the compilation time
• -O2: Applies a broad set of optimizations that aim to improve code execution

speed without incurring excessive compilation time. It does not perform
optimizations that increase the size of the code significantly.

• -O3: This level enables more aggressive optimizations than -O2, including
optimizations that may significantly increase code size (e.g., loop unrolling). It
aims for the highest execution speed, regardless of compilation time or code
size.

21

-O<level> clang flags (2)
▪-Os

• Optimizes for code size without significantly compromising execution speed.
• Use case: Good for systems with limited memory or when distributing smaller binaries is

desirable.

▪-Oz
• Similar to -Os but more aggressive in reducing code size, possibly at a greater cost to

execution speed.
• Use case: Used for applications where the smallest possible code size is paramount,

such as embedded systems with very limited memory resources.

▪-Ofast
• All the optimizations from -O3 + optimizations that are not standard-compliant but are

likely benefit performance. E.g., enables aggressive math optimizations.
• Use Case: Suitable for applications where execution performance is top priority and

where deviations from standard math behavior are acceptable.

▪-Og
• Provides a good opt level while maintaining reasonable debug capabilities.

22

Semantics-preserving optimizations

▪An optimization is semantics-preserving if it does not alter the
semantics of the original program

▪Examples

• Dead code elimination

• Loop invariant code motion

▪Non-examples

• Replace bubble sort with quick sort

23

Function inlining

▪Simply insert function body at call site

▪Not always profitable: there are heuristics to only inline small
functions

• Using ‘inline’ keyword in C/C++ only suggests compiler to inline function, not
guarantees that

• There is __attribute__((always_inline)) used for guaranteed inlining
by the compiler

▪Usually more aggressive on GPUs and less aggressive on FPGAs

Note: there is an __attribute__((noinline)) that can be used to explicitly prevent function inlining,
ensuring that the function call remains as a normal function call instead of being inlined by the compiler

https://llvm.org/docs/Passes.html#always-inline-inliner-for-always-inline-functions
https://llvm.org/docs/Passes.html#inline-function-integration-inlining

https://llvm.org/docs/Passes.html#always-inline-inliner-for-always-inline-functions
https://llvm.org/docs/Passes.html#inline-function-integration-inlining

24

Dead instruction elimination

▪Example:

%0 = add i32 %arg0, %arg1

%1 = sub i32 %arg0, %arg1

ret %1

; %0 is not used on RHS

https://llvm.org/docs/Passes.html#dce-dead-code-elimination
https://llvm.org/docs/Passes.html#globaldce-dead-global-elimination

https://llvm.org/docs/Passes.html#adce-aggressive-dead-code-elimination

https://llvm.org/docs/Passes.html#dce-dead-code-elimination
https://llvm.org/docs/Passes.html#globaldce-dead-global-elimination
https://llvm.org/docs/Passes.html#adce-aggressive-dead-code-elimination

25

Liveness analysis

▪A variable is live at some point if it holds a value that may be needed in the
future

▪Analysis is performed from the end of the function

▪Given block s:

https://en.wikipedia.org/wiki/Live_variable_analysis

https://en.wikipedia.org/wiki/Live_variable_analysis

26

Dead store elimination

▪Removes stores to local variables, that are never read

▪LLVM variant only considers a single basic block

▪Example:

store i32 0, i32* %ptr <- going to be removed

store i32 42, i32* %ptr

https://llvm.org/docs/Passes.html#dse-dead-store-elimination

https://llvm.org/docs/Passes.html#dse-dead-store-elimination

27

Store to load forwarding

▪Replace loads from memory with SSA values

▪Example:

store i32 42, i32* %ptr

%0 = load i32* %ptr

add i32 %0, 1

Replace with:

add i32 42, 1

https://llvm.org/docs/Passes.html#mem2reg-promote-memory-to-register

https://llvm.org/docs/Passes.html#mem2reg-promote-memory-to-register

28

Spilling registers on stack

Inverse of mem2reg pass

https://llvm.org/docs/Passes.html#reg2mem-demote-all-values-to-stack-slots

Why?
● For memory sanitizing
● Converting SSA to Non-SSA for Legacy Compilers
● Software Fault Injection & Fuzzing
● Lowering for Stack-Based Architectures

https://llvm.org/docs/Passes.html#reg2mem-demote-all-values-to-stack-slots

29

Constant folding

▪Example:

%0 = add i32 42, 1

%1 = add i32 %arg0, %0

Equivalent to:

%0 = add i32 %arg0, 43

https://llvm.org/docs/Passes.html#instcombine-combine-redundant-instructions
https://llvm.org/docs/Passes.html#aggressive-instcombine-combine-expression-patterns

https://llvm.org/docs/Passes.html#instcombine-combine-redundant-instructions
https://llvm.org/docs/Passes.html#aggressive-instcombine-combine-expression-patterns

30

Arithmetic simplification

▪Example:

%0 = mul %arg0, 4

Equivalent to

%0 = shl %arg0, 2

https://llvm.org/docs/Passes.html#instcombine-combine-redundant-instructions
https://llvm.org/docs/Passes.html#aggressive-instcombine-combine-expression-patterns

https://llvm.org/docs/Passes.html#instcombine-combine-redundant-instructions
https://llvm.org/docs/Passes.html#aggressive-instcombine-combine-expression-patterns

31

Combine redundant instructions

▪Implementation is rules based in LLVM

▪A variation of arithmetic simplification

▪Often called peephole optimization

▪Example

%1 = add i32 %0, 1

%2 = add i32 %1, 1

Equivalent to

%1 = add i32 %0, 2

https://llvm.org/docs/Passes.html#instcombine-combine-redundant-instructions
https://llvm.org/docs/Passes.html#aggressive-instcombine-combine-expression-patterns

https://llvm.org/docs/Passes.html#instcombine-combine-redundant-instructions
https://llvm.org/docs/Passes.html#aggressive-instcombine-combine-expression-patterns

32

Common subexpression elimination (CSE)

▪Example: a = b + c + d; e = b + c + f; => t = b + c; a = t + d; e = t +
f;

▪Principle

• An expression a op b is available at a point p in a program if:

• Every path from the initial node to p evaluates a * b before reaching p

• There are no assignments (stores) to a or b after the evaluation but before p

33

Global value numbering

▪GVN is a technique of determining equivalent computations in
program

▪GVN works by assigning a numeric value to expressions

▪Two expressions have equal values if they are provably equal (thus
algorithm requires SSA)

https://llvm.org/docs/Passes.html#gvn-global-value-numbering

https://llvm.org/docs/Passes.html#gvn-global-value-numbering

34

Memcpy optimizations

▪Eliminates memcpy calls and replaces sets of stores with memset

https://godbolt.org/z/odsKjnxra

https://godbolt.org/z/odsKjnxra

35

Many more…

Available passes list:

https://llvm.org/docs/Passes.
html

https://llvm.org/docs/Passes.html
https://llvm.org/docs/Passes.html

36

Important notes on passes

▪There is no silver bullet pass or pass pipeline
• Different target architectures, programming domains have different

demands
• Different targets require different optimizations (what do we optimize?)

▪Pass execution order matters
• Some passes have prerequisites
• Some passes are useless after other passes have been applied

▪Reuse of already known implementations and concepts is
important
• But implementing something new may still be necessary

37

Running optimizations
▪Use opt tool

▪See full list of available passes names:
https://llvm.org/docs/Passes.html (opt --print-pass-names)

Typical workflow:
1. Get LLVM IR:

clang -S -emit-llvm example.c -o example.ll

2. Apply optimizations

opt -S -mem2reg example.ll -o optimized.ll

opt -S -loop-unroll -instcombine -simplifycfg example.ll -o
optimized.ll

https://llvm.org/docs/Passes.html

38

Next time…

▪Loop optimizations

40

Test

https://forms.gle/VaqaruCTsACXQ6zf7

Submission time: 10 minutes

Backup: me@gooddoog.ru

https://forms.gle/VaqaruCTsACXQ6zf7
mailto:me@gooddoog.ru

41

Extra materials

▪LLVM IR language reference - https://llvm.org/docs/LangRef.html
▪Single-Static Assignment Form and PHI -

https://mapping-high-level-constructs-to-llvm-ir.readthedocs.io/en/latest/control-structures/ssa-phi.html
▪LLVM Developers’ Meeting: A. Warzynski “Writing an LLVM Pass: 101”

https://www.youtube.com/watch?v=ar7cJl2aBuU
▪List of LLVM Analyses and Transformations - https://llvm.org/docs/Passes.html

https://llvm.org/docs/LangRef.html
https://mapping-high-level-constructs-to-llvm-ir.readthedocs.io/en/latest/control-structures/ssa-phi.html
https://www.youtube.com/watch?v=ar7cJl2aBuU
https://llvm.org/docs/Passes.html

42

	Compilers 101
	Previously…
	Today
	Memory SSA
	What are PHI nodes?
	Why PHI nodes?
	Example
	Working with LLVM IR
	Pass
	LLVM pass
	Pass types
	Other types of passes
	Legacy vs new pass managers (PM)
	Analysis vs Transformation
	Writing a pass
	Registering a pass
	Why optimizing IR?
	Challenges
	Optimization targets
	-O<level> clang flags (1)
	-O<level> clang flags (2)
	Semantics-preserving optimizations
	Function inlining
	Dead instruction elimination
	Liveness analysis
	Dead store elimination
	Store to load forwarding
	Spilling registers on stack
	Constant folding
	Arithmetic simplification
	Combine redundant instructions
	Common subexpression elimination (CSE)
	Global value numbering
	Memcpy optimizations
	Many more…
	Important notes on passes
	Running optimizations
	Next time…
	Test (2)
	Extra materials
	Slide 42

