Compilers 101

Backends - Part 1

Previously...

Preprocessing
Lexical analysis

Syntax analysis

Semantic analysis

IR Generation

Middle-end

IR Optimization

Optimization

Code generation

Today

* Compiler backends
* Backend stages and algorithms behind

Backend in LLVM

C++

Go

Rust

Toy

\ Front-end

—» Clang

—p Gollvim

Middle-end

'/

LLVM IR —»

LLVM optimizer

— 1! rustc) b4
Ve
”~

p» [LIVM IR —

Back-ely//

—

LLVM static compiler

[

N

N

T

https://wr.informatik.uni-hamburg.de/ media/teaching/wintersemester 2020 2021/ep-2021 hosseini llvm.pdf

x86

ARM

e

RISC-V

P

™ MIPS

PowerPC

https://wr.informatik.uni-hamburg.de/_media/teaching/wintersemester_2020_2021/ep-2021_hosseini_llvm.pdf

LLVM backend pipeline (overview)

Instruction Instruction Register
Fasses ‘ [selection] E‘ scheduling ‘ ‘ Fasses ‘ ‘ allncatiﬂn]

-

)

\ 4
‘ ‘ Instruction ‘ ‘ ‘ ‘ Code
[Passes scheduling Passes emission o
ject

code

https://getting-started-with-llvm-core-libraries-zh-cn.readthedocs.io/zh-cn/latest/ch06.html

https://getting-started-with-llvm-core-libraries-zh-cn.readthedocs.io/zh-cn/latest/ch06.html

Modern LLVM backend: detailed view

LLVM-IR Generic Machine Instructions (gMIR), Machine Instructions (MIR), and gMIR+MIR mixed

IR Bedisier Instruction
> 4l L egalizer > Bank >
Translator Selector
Selector
LLVM-IR m gMIR + MIR gMIR + MIR

https://llvm.org/docs/GloballSel/Pipeline.html

Details about LLVM backend are going to be covered next time...

https://llvm.org/docs/GlobalISel/Pipeline.html

Instruction selection
* We now have an optimized IR code, but it’s not consumable by HW

* Instruction selection is a stage of compiler, that transforms IR into low-
level IR

In case of LLVM compiler: LLVM IR = MIR (Machine IR) hsvesns: Secs, i

CMP32ri $edi, 1, implicit-def $eflags

1 source filename = "factorial module.ll” JCC_1 %bb.2, 15, implicit killed $eflags

define i32 @factorial(i32 %n) {
entry:

eax MOV32ri 1

RET64 Seax

gcmp = icmp sle i32 %n, 1

br il %cmp, label %base, label %recursive
bb.2.recursive:
base:

ret i32 1

liveins: $edi, $rbx

-setup PUSH64r killed $rbx, implicit-def $rsp, implicit $rsp
-setup CFI_INSTRUCTION def cfa offset 16
NSTRUCTION offset $rbx, -16

MOV32rr $edi, implicit-def $rbx

recursive:

$n_minus one = sub i32 %n, 1

$rec _call = call i32 @factorial(i32 %n minus one)

e S$edi LEA64 32r renamable $rbx, 1, $noreg, -1, $noreg

$result = mul i32 %n, %rec call 32 target-flags(x86-plt) @factorial, csr_64, implicit $rsp, implic

ret 132 srasult amable $eax IMUL32rr killed renamable $eax, renamable $ebx, implicit-def
: frame-destroy POP64r implicit-def $rsp, implicit $rsp
-destroy CFI_INSTRUCTION def cfa offset 8

RET64 Seax

https://godbolt.org/z/d33¢c1P99M

https://godbolt.org/z/d33c1P99M

[Abstract/HW agnostic instructions]

Instruction selection methods | " |

HW specific instructions

* Macro expansion
* Replace all IR instructions by matching templates

* Graph covering
* Transform IR into graph
* Cover graph with patterns - templates that match a portion of a graph

* Lowest common denominator strategy

* Attempt to select instructions that would allow execution on the widest range of
hardware

Memory hierarchy

A

Increase in cost per bit

Increase in Capacity & Access Time

LEVEL 0

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

MEMORY HIERARCHY DESIGN

https://www.geeksforgeeks.org/memory-hierarchy-design-and-its-characteristics/

https://www.geeksforgeeks.org/memory-hierarchy-design-and-its-characteristics/

Registers

Register File

ibltib Reg. # for Read Port 0

‘S/bltib Reg. # for Read Port 1

5 bit .
228 Reg. # for Write Port 0

MP Write Data for Write Port
ﬁlbLb Write Enable

Data Read from
Read Port 0

Data Read from
Read Port 1

| 64 bits |

64 bits |

https://www.cs.uni.edu/~fienup/cs041s08/lectures/lec13 reg file.pdf

https://www.cs.uni.edu/~fienup/cs041s08/lectures/lec13_reg_file.pdf

Registers in modern CPUs

Different number of scalar registers
in the most common architectures

Architecture 32 bits 64 bits

ARM 15 31

Intel x86 8 16
MIPS 32 32
POWER/PowerPC 32 32
RISC-V 16/32 | 32
SPARC 31 31

https://en.wikipedia.org/wiki/Register allocation

11

https://en.wikipedia.org/wiki/Register_allocation

SSA recap

* Registers are only assighed once
* Infinite amount of registers

Challenges

* Registers are scarce
* |n most of the cases, we deal with dozens of registers

* Registers are complicated
* Registers can be made of smaller registers
* Some registers may be reserved
* Some instructions must store results to certain registers
* Some registers are part of ABI

13

Challenges

Program Live Ranges Registers
XH - a xl-l xL. YH YL zl-l ZL
B
Y = o
c
X, = o
d
Y, = ¥
E
Z = X,
‘“ =X Y. 2

https://llvm.org/pubs/2008-06-PLDI-PuzzleSolving.pdf

14

https://llvm.org/pubs/2008-06-PLDI-PuzzleSolving.pdf

Graph theory to the rescue!

* Each register is a node in a graph
e Edges are interfering ranges (i.e., registers that live together)

Graph coloring

* Process vertices in the given order
* Assign colors to each vertex

e Use the smallest color number that
is not already in use

Register allocation mechanism

Register allocation mechanism stages

* Renumber

* assign/verify unique virtual register IDs
* Build

* build a graph: liveness analysis

* Coalesce
* merge nodes that represent copy-related variables (reduce need of COPY)

* Spill Cost
* calculate a spill cost for each variable
* Simplify
e simplify a graph (e.g., drop low-degree nodes and push them to the stack)
* Select
e compiler pops nodes from the stack and tries to assign them to registers (color them)
e if anode cannot be assigned a register (e.g., it conflicts with all available registers), the
compiler designates it as “spilled”

* Insert spill code

* compiler inserts extra load/store instructions (the spill code) to move that variable between
memory and registers (if needed)

Pros and cons

* Good known algorithm

* NP-hard problem

* Evicted variables are spilled
everywhere

* Variable, that is not spilled, is
kept in the register throughout
its whole lifetime

19

Linear scan to the rescue!

* Instead of building a graph, all the variables are linearly scanned to
determine their live range

* All ranges are sorted and traversed chronologically.
* Registers are allocated in a greedy way

20

Pros and cons

* Fast algorithm

e Lifetime holes

* Spilled variable will stay spilled
for its entire lifetime

21

CPU scheduler and pipeline

¥
Allocate / Rename / Move Elimination / Zero Idiom
Scheduler
v !P 1!' L J A 4 v l Y l l
P4+P9|| P2 P8 P3 P7 Port O Port 1 Port 5 Port 6
Store ||load || STA || load || STA ALU ALU ALU ALU
data = LEA LEA LEA
v v v v v 4 =| shift Mul MulHi Shift
48KB L1 Data Cache JMP1 iDIV JMP2
! FMA FMA*
512KB L2 Cache 8 ALU ALU* ALU
S| shift Shift*
fpDIV Shuffle* Shuffle
| SOC |

Figure 2-1. Processor Core Pipeline Functionality of the Ice Lake Client Microarchitecture'

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

Instruction scheduling

* Instruction scheduling is a compiler optimization used to improve ILP

* Goals:
* Avoid pipeline stalls
* Avoid illegal or semantically ambiguous operations

Instruction scheduling types

* Static instruction scheduling:

during compile time
reordering instructions

compiler has less execution
context

more time for instruction
rearrangement at compile time

complicates compiler

* Dynamic instruction scheduling:

* during execution time on a HW

* Selectively issuing instructions to
execution units

e HW (e.g. CPU) has more execution
context

* less time for instruction
rearrangement at execution time

* complicates HW

Pipeline execution

Program
execution
order

(in instructions)

lw $10, 20($1)
sub $11, $2, $3
add $12, $3, $4
lw $13, 24($1)

add $14, $5, $6

Time (in clock cycles)

CC1 cC2 CC3 CC 4 CC5 CCe6 CC7 cC8 CcC9
Insftgnilé:;t'llnn Inj;ﬂ:n Execution ag:a;:s Write back
Ins::tlc{:l'iiun In;;fcu;:dﬁ:n - EISI?:;S Write back
'”E:L'igflm“ '";;ﬂgm Execution agf;is Write back
'"BEE_':“" Ing;r;g::’i:ﬂ Execution agc.?;s Write back
'"5:9""1‘;3:”" Enmi:n Execution agc?;zs Write back

Data hazards

* Read after Write
* |nstruction 1 writes a value used later by instruction 2. 11 must come first.

* Write after Read

* [nstruction 1 reads a location that is later overwritten by Instruction 2. Instruction
1 must come first, or it will read the new value instead of the old

* Write after Write

* Two instructions both write the same location. They must occur in their original
order

Scheduling algorithm inputs

Hardware details like:
* Micro-ops

* Latencies
* Resource cycles

Scheduling algorithm

* Build dependency graph
* Apply topology sort
* Use target-specific heuristics to schedule instructions

List scheduling algorithm

* Input: list of jobs that should be executed on a set of m machines

* Take first job in the list

* Find a machine that is available for executing job
* |If a machine is found, schedule the job
* Otherwise, select the next job

Code emission

* asm emission
* object file generation

IR

obj

792415C0
792415C1
792415C3
792415CH
792415C8
792415CE
792415CD
79241 5CF
792415D2
79241504
79241507
792415DA
792415DC
79241 5DF
792415E0

55

BOES
BE45 08
DEZ2E
BE4D OC
DEZ29
DEC1
8655 10
DE3A
DEGE DA
DEGS DA
DEC1
DE7A DA
3D

2 0Co0

aSim

push ebp

mov ebp, esp

mov eax, [ebp+0x08]
fld tword [eax]

mov ecx, [ebp+0x0C]
fld tword [ecx]
faddp

mov edx, [ebp+0x10]
fstp tword [edx]

fld tword [eax+0x0A]
fld tword [ecx+0x0A]
faddp

fstp tword [edx+0x0a]
pop ebp

ret 0x000C

Target specific passes

* |nstruction selection

* Register allocation

* Peephole optimizations

* Loop optimizations

* Vectorizer

* Machine Code optimizations

* Fine-tunes machine code, including adjusting alignment, optimizing branch

instructions, and applying target-specific tweaks to increase efficiency.
e Link-Time optimizations (LTO)

* Performs optimizations across multiple compilation units or modules at the link
stage, enabling more global optimizations that are not possible when compiling
files separately

* Profile-Guided Optimization (PGO)

* Uses runtime profiling information to guide optimization decisions, such as

which branches to prioritize for speed or which loops to optimize for unrolling

Next time...

e LLVM backend overview

Test

https://forms.gle/LZZZYDejbnUV19zY7
Submission time: 10 minutes

Kakue npo6neMbl pewwaroT anroputMbl pacnpeaeneHus/annokauum peructpos
(register allocation)? B ueM cocTouT camMm anroputm?

Your answer

[=]

3auyeM ncnosnb3yeTcs airopuTM NiaHMPOBaHNUSA/YNOPSAA0YNBAHUA UHCTPYKLUIA
(instruction scheduling)?

Your answer

Backup: me@gooddoog.ru

https://forms.gle/LZZZYDejbnUV19zY7
mailto:me@gooddoog.ru

Extra materials

* LLVM Developers’ Meeting: J. Bogner & A. Nandakumar & D. Sanders “Tutorial: GloballSel ” -
https://www.youtube.com/watch?v=Zh4R407yJ2k

* Tutorial: Creating an LLVM Backend for the CpuO Architecture - https://jonathan2251.github.io/lbd/
* https://llvm.org/devmtg/2014-04/PDFs/Talks/Building%20an%20LLVM%20backend.pdf

* Writing an LLVM backend: https://llvm.org/docs/WritingAnLLVMBackend.html

* Welcome to the Back End: The LLVM Machine Representation:
https://llvm.org/devmtg/2017-10/slides/Braun-Welcome%20t0%20the%20Back%20End.pdf

https://www.youtube.com/watch?v=Zh4R40ZyJ2k
https://jonathan2251.github.io/lbd/
https://llvm.org/devmtg/2014-04/PDFs/Talks/Building%20an%20LLVM%20backend.pdf
https://llvm.org/docs/WritingAnLLVMBackend.html
https://llvm.org/devmtg/2017-10/slides/Braun-Welcome%20to%20the%20Back%20End.pdf

	Compilers 101
	Previously…
	Today
	Backend in LLVM
	LLVM backend pipeline (overview)
	Modern LLVM backend: detailed view
	Instruction selection
	Instruction selection methods
	Memory hierarchy
	Registers
	Registers in modern CPUs
	SSA recap
	Challenges
	Challenges (2)
	Graph theory to the rescue!
	Graph coloring
	Register allocation mechanism
	Register allocation mechanism stages
	Pros and cons
	Linear scan to the rescue!
	Pros and cons (2)
	Slide 22
	Instruction scheduling
	Instruction scheduling types
	Pipeline execution
	Data hazards
	Scheduling algorithm inputs
	Scheduling algorithm
	List scheduling algorithm
	Code emission
	Target specific passes
	Next time…
	Test (2)
	Extra materials

