
Compilers 101
Backends - Part 1
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Today

• Compiler backends
• Backend stages and algorithms behind



Backend in LLVM

https://wr.informatik.uni-hamburg.de/_media/teaching/wintersemester_2020_2021/ep-2021_hosseini_llvm.pdf 

https://wr.informatik.uni-hamburg.de/_media/teaching/wintersemester_2020_2021/ep-2021_hosseini_llvm.pdf


LLVM backend pipeline (overview)

https://getting-started-with-llvm-core-libraries-zh-cn.readthedocs.io/zh-cn/latest/ch06.html 

https://getting-started-with-llvm-core-libraries-zh-cn.readthedocs.io/zh-cn/latest/ch06.html


Modern LLVM backend: detailed view

Details about LLVM backend are going to be covered next time…

https://llvm.org/docs/GlobalISel/Pipeline.html 

https://llvm.org/docs/GlobalISel/Pipeline.html


Instruction selection
• We now have an optimized IR code, but it’s not consumable by HW
• Instruction selection is a stage of compiler, that transforms IR into low-

level IR
In case of LLVM compiler: LLVM IR → MIR (Machine IR)

https://godbolt.org/z/d33c1P99M 

LLVM IR

MIR

https://godbolt.org/z/d33c1P99M


Instruction selection methods

• Macro expansion
• Replace all IR instructions by matching templates

• Graph covering
• Transform IR into graph
• Cover graph with patterns – templates that match a portion of a graph

• Lowest common denominator strategy
• Attempt to select instructions that would allow execution on the widest range of 

hardware

Abstract/HW agnostic instructions

HW specific instructions



Memory hierarchy

https://www.geeksforgeeks.org/memory-hierarchy-design-and-its-characteristics/ 

https://www.geeksforgeeks.org/memory-hierarchy-design-and-its-characteristics/


Registers

https://www.cs.uni.edu/~fienup/cs041s08/lectures/lec13_reg_file.pdf 

https://www.cs.uni.edu/~fienup/cs041s08/lectures/lec13_reg_file.pdf


Registers in modern CPUs

https://en.wikipedia.org/wiki/Register_allocation 11

https://en.wikipedia.org/wiki/Register_allocation


SSA recap

• Registers are only assigned once
• Infinite amount of registers



Challenges

• Registers are scarce
• In most of the cases, we deal with dozens of registers

• Registers are complicated
• Registers can be made of smaller registers
• Some registers may be reserved
• Some instructions must store results to certain registers
• Some registers are part of ABI
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Challenges

14

https://llvm.org/pubs/2008-06-PLDI-PuzzleSolving.pdf 

https://llvm.org/pubs/2008-06-PLDI-PuzzleSolving.pdf


Graph theory to the rescue!

• Each register is a node in a graph
• Edges are interfering ranges (i.e., registers that live together)



Graph coloring

• Process vertices in the given order
• Assign colors to each vertex
• Use the smallest color number that 

is not already in use



Register allocation mechanism



Register allocation mechanism stages
• Renumber

• assign/verify unique virtual register IDs
• Build

• build a graph: liveness analysis
• Coalesce

• merge nodes that represent copy-related variables (reduce need of COPY)
• Spill Cost

• calculate a spill cost for each variable
• Simplify

• simplify a graph (e.g., drop low-degree nodes and push them to the stack)
• Select

• compiler pops nodes from the stack and tries to assign them to registers (color them)
• if a node cannot be assigned a register (e.g., it conflicts with all available registers), the 

compiler designates it as “spilled”
• Insert spill code

• compiler inserts extra load/store instructions (the spill code) to move that variable between 
memory and registers (if needed)



Pros and cons

• Good known algorithm • NP-hard problem
• Evicted variables are spilled 

everywhere
• Variable, that is not spilled, is 

kept in the register throughout 
its whole lifetime
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Linear scan to the rescue!

• Instead of building a graph, all the variables are linearly scanned to 
determine their live range

• All ranges are sorted and traversed chronologically.
• Registers are allocated in a greedy way

20



Pros and cons

• Fast algorithm • Lifetime holes
• Spilled variable will stay spilled 

for its entire lifetime

21



https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html 

CPU scheduler and pipeline

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html


Instruction scheduling

• Instruction scheduling is a compiler optimization used to improve ILP
• Goals:

• Avoid pipeline stalls
• Avoid illegal or semantically ambiguous operations



Instruction scheduling types

• Static instruction scheduling:

• during compile time
• reordering instructions
• compiler has less execution 

context
• more time for instruction 

rearrangement at compile time
• complicates compiler

• Dynamic instruction scheduling:

• during execution time on a HW
• Selectively issuing instructions to 

execution units
• HW (e.g. CPU) has more execution 

context
• less time for instruction 

rearrangement at execution time
• complicates HW



Pipeline execution



Data hazards

• Read after Write
• Instruction 1 writes a value used later by instruction 2. I1 must come first.

• Write after Read
• Instruction 1 reads a location that is later overwritten by Instruction 2. Instruction 

1 must come first, or it will read the new value instead of the old

• Write after Write 
• Two instructions both write the same location. They must occur in their original 

order



Scheduling algorithm inputs

Hardware details like:
• Micro-ops
• Latencies
• Resource cycles



Scheduling algorithm

• Build dependency graph
• Apply topology sort
• Use target-specific heuristics to schedule instructions



List scheduling algorithm

• Input: list of jobs that should be executed on a set of m machines

• Take first job in the list
• Find a machine that is available for executing job

• If a machine is found, schedule the job
• Otherwise, select the next job



Code emission

• asm emission
• object file generation

IR

obj asm



Target specific passes
• Instruction selection
• Register allocation
• Peephole optimizations
• Loop optimizations
• Vectorizer
• Machine Code optimizations

• Fine-tunes machine code, including adjusting alignment, optimizing branch 
instructions, and applying target-specific tweaks to increase efficiency.

• Link-Time optimizations (LTO)
• Performs optimizations across multiple compilation units or modules at the link 

stage, enabling more global optimizations that are not possible when compiling 
files separately

• Profile-Guided Optimization (PGO)
• Uses runtime profiling information to guide optimization decisions, such as 

which branches to prioritize for speed or which loops to optimize for unrolling



Next time…

• LLVM backend overview



Test

https://forms.gle/LZZZYDejbnUV19zY7 
Submission time: 10 minutes 

Backup: me@gooddoog.ru 

https://forms.gle/LZZZYDejbnUV19zY7
mailto:me@gooddoog.ru


Extra materials
• LLVM Developers’ Meeting: J. Bogner & A. Nandakumar & D. Sanders “Tutorial: GlobalISel ” - 

https://www.youtube.com/watch?v=Zh4R40ZyJ2k 

• Tutorial: Creating an LLVM Backend for the Cpu0 Architecture - https://jonathan2251.github.io/lbd/ 

• https://llvm.org/devmtg/2014-04/PDFs/Talks/Building%20an%20LLVM%20backend.pdf

• Writing an LLVM backend: https://llvm.org/docs/WritingAnLLVMBackend.html 

• Welcome to the Back End: The LLVM Machine Representation: 
https://llvm.org/devmtg/2017-10/slides/Braun-Welcome%20to%20the%20Back%20End.pdf 

https://www.youtube.com/watch?v=Zh4R40ZyJ2k
https://jonathan2251.github.io/lbd/
https://llvm.org/devmtg/2014-04/PDFs/Talks/Building%20an%20LLVM%20backend.pdf
https://llvm.org/docs/WritingAnLLVMBackend.html
https://llvm.org/devmtg/2017-10/slides/Braun-Welcome%20to%20the%20Back%20End.pdf
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