
Compilers 101
Backends - Part 1



Previously…
Preprocessing

Lexical analysis

Syntax analysis

Semantic analysis

IR Generation

IR Optimization

Optimization

Code generation

Fronten
d

Backend

Middle-end



Today

• Compiler backends
• Backend stages and algorithms behind



Backend in LLVM

https://wr.informatik.uni-hamburg.de/_media/teaching/wintersemester_2020_2021/ep-2021_hosseini_llvm.pdf 

https://wr.informatik.uni-hamburg.de/_media/teaching/wintersemester_2020_2021/ep-2021_hosseini_llvm.pdf


LLVM backend pipeline (overview)

https://getting-started-with-llvm-core-libraries-zh-cn.readthedocs.io/zh-cn/latest/ch06.html 

https://getting-started-with-llvm-core-libraries-zh-cn.readthedocs.io/zh-cn/latest/ch06.html


Modern LLVM backend: detailed view

Details about LLVM backend are going to be covered next time…

https://llvm.org/docs/GlobalISel/Pipeline.html 

https://llvm.org/docs/GlobalISel/Pipeline.html


Instruction selection
• We now have an optimized IR code, but it’s not consumable by HW
• Instruction selection is a stage of compiler, that transforms IR into low-

level IR
In case of LLVM compiler: LLVM IR → MIR (Machine IR)

https://godbolt.org/z/d33c1P99M 

LLVM IR

MIR

https://godbolt.org/z/d33c1P99M


Instruction selection methods

• Macro expansion
• Replace all IR instructions by matching templates

• Graph covering
• Transform IR into graph
• Cover graph with patterns – templates that match a portion of a graph

• Lowest common denominator strategy
• Attempt to select instructions that would allow execution on the widest range of 

hardware

Abstract/HW agnostic instructions

HW specific instructions



Memory hierarchy

https://www.geeksforgeeks.org/memory-hierarchy-design-and-its-characteristics/ 

https://www.geeksforgeeks.org/memory-hierarchy-design-and-its-characteristics/


Registers

https://www.cs.uni.edu/~fienup/cs041s08/lectures/lec13_reg_file.pdf 

https://www.cs.uni.edu/~fienup/cs041s08/lectures/lec13_reg_file.pdf


Registers in modern CPUs

https://en.wikipedia.org/wiki/Register_allocation 11

https://en.wikipedia.org/wiki/Register_allocation


SSA recap

• Registers are only assigned once
• Infinite amount of registers



Challenges

• Registers are scarce
• In most of the cases, we deal with dozens of registers

• Registers are complicated
• Registers can be made of smaller registers
• Some registers may be reserved
• Some instructions must store results to certain registers
• Some registers are part of ABI

13



Challenges

14

https://llvm.org/pubs/2008-06-PLDI-PuzzleSolving.pdf 

https://llvm.org/pubs/2008-06-PLDI-PuzzleSolving.pdf


Graph theory to the rescue!

• Each register is a node in a graph
• Edges are interfering ranges (i.e., registers that live together)



Graph coloring

• Process vertices in the given order
• Assign colors to each vertex
• Use the smallest color number that 

is not already in use



Register allocation mechanism



Register allocation mechanism stages
• Renumber

• assign/verify unique virtual register IDs
• Build

• build a graph: liveness analysis
• Coalesce

• merge nodes that represent copy-related variables (reduce need of COPY)
• Spill Cost

• calculate a spill cost for each variable
• Simplify

• simplify a graph (e.g., drop low-degree nodes and push them to the stack)
• Select

• compiler pops nodes from the stack and tries to assign them to registers (color them)
• if a node cannot be assigned a register (e.g., it conflicts with all available registers), the 

compiler designates it as “spilled”
• Insert spill code

• compiler inserts extra load/store instructions (the spill code) to move that variable between 
memory and registers (if needed)



Pros and cons

• Good known algorithm • NP-hard problem
• Evicted variables are spilled 

everywhere
• Variable, that is not spilled, is 

kept in the register throughout 
its whole lifetime

19



Linear scan to the rescue!

• Instead of building a graph, all the variables are linearly scanned to 
determine their live range

• All ranges are sorted and traversed chronologically.
• Registers are allocated in a greedy way

20



Pros and cons

• Fast algorithm • Lifetime holes
• Spilled variable will stay spilled 

for its entire lifetime

21



https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html 

CPU scheduler and pipeline

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html


Instruction scheduling

• Instruction scheduling is a compiler optimization used to improve ILP
• Goals:

• Avoid pipeline stalls
• Avoid illegal or semantically ambiguous operations



Instruction scheduling types

• Static instruction scheduling:

• during compile time
• reordering instructions
• compiler has less execution 

context
• more time for instruction 

rearrangement at compile time
• complicates compiler

• Dynamic instruction scheduling:

• during execution time on a HW
• Selectively issuing instructions to 

execution units
• HW (e.g. CPU) has more execution 

context
• less time for instruction 

rearrangement at execution time
• complicates HW



Pipeline execution



Data hazards

• Read after Write
• Instruction 1 writes a value used later by instruction 2. I1 must come first.

• Write after Read
• Instruction 1 reads a location that is later overwritten by Instruction 2. Instruction 

1 must come first, or it will read the new value instead of the old

• Write after Write 
• Two instructions both write the same location. They must occur in their original 

order



Scheduling algorithm inputs

Hardware details like:
• Micro-ops
• Latencies
• Resource cycles



Scheduling algorithm

• Build dependency graph
• Apply topology sort
• Use target-specific heuristics to schedule instructions



List scheduling algorithm

• Input: list of jobs that should be executed on a set of m machines

• Take first job in the list
• Find a machine that is available for executing job

• If a machine is found, schedule the job
• Otherwise, select the next job



Code emission

• asm emission
• object file generation

IR

obj asm



Target specific passes
• Instruction selection
• Register allocation
• Peephole optimizations
• Loop optimizations
• Vectorizer
• Machine Code optimizations

• Fine-tunes machine code, including adjusting alignment, optimizing branch 
instructions, and applying target-specific tweaks to increase efficiency.

• Link-Time optimizations (LTO)
• Performs optimizations across multiple compilation units or modules at the link 

stage, enabling more global optimizations that are not possible when compiling 
files separately

• Profile-Guided Optimization (PGO)
• Uses runtime profiling information to guide optimization decisions, such as 

which branches to prioritize for speed or which loops to optimize for unrolling



Next time…

• LLVM backend overview



Test

https://forms.gle/LZZZYDejbnUV19zY7 
Submission time: 10 minutes 

Backup: me@gooddoog.ru 

https://forms.gle/LZZZYDejbnUV19zY7
mailto:me@gooddoog.ru


Extra materials
• LLVM Developers’ Meeting: J. Bogner & A. Nandakumar & D. Sanders “Tutorial: GlobalISel ” - 

https://www.youtube.com/watch?v=Zh4R40ZyJ2k 

• Tutorial: Creating an LLVM Backend for the Cpu0 Architecture - https://jonathan2251.github.io/lbd/ 

• https://llvm.org/devmtg/2014-04/PDFs/Talks/Building%20an%20LLVM%20backend.pdf

• Writing an LLVM backend: https://llvm.org/docs/WritingAnLLVMBackend.html 

• Welcome to the Back End: The LLVM Machine Representation: 
https://llvm.org/devmtg/2017-10/slides/Braun-Welcome%20to%20the%20Back%20End.pdf 

https://www.youtube.com/watch?v=Zh4R40ZyJ2k
https://jonathan2251.github.io/lbd/
https://llvm.org/devmtg/2014-04/PDFs/Talks/Building%20an%20LLVM%20backend.pdf
https://llvm.org/docs/WritingAnLLVMBackend.html
https://llvm.org/devmtg/2017-10/slides/Braun-Welcome%20to%20the%20Back%20End.pdf

	Compilers 101
	Previously…
	Today
	Backend in LLVM
	LLVM backend pipeline (overview)
	Modern LLVM backend: detailed view
	Instruction selection
	Instruction selection methods
	Memory hierarchy
	Registers
	Registers in modern CPUs
	SSA recap
	Challenges
	Challenges (2)
	Graph theory to the rescue!
	Graph coloring
	Register allocation mechanism
	Register allocation mechanism stages
	Pros and cons
	Linear scan to the rescue!
	Pros and cons (2)
	Slide 22
	Instruction scheduling
	Instruction scheduling types
	Pipeline execution
	Data hazards
	Scheduling algorithm inputs
	Scheduling algorithm
	List scheduling algorithm
	Code emission
	Target specific passes
	Next time…
	Test (2)
	Extra materials

