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Why debugging?

• Static analysis does not discover many kinds of errors (especially, logic 
errors)

• Retrieve runtime information
• Need some insight into running programs
• Allow to change execution flow without recompilation



Debuggers in a nutshell

• Ability to control execution
• Resume after signal/trap

• Ability to read/write memory
• Registers and RAM

• Mapping from binary code to source



Executable and linkable format (ELF)

• ELF is a common executable file format 
for Unix-like systems

• File is divided in multiple sections
• Sections can be read-only and executable

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format 

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format


DWARF

• DWARF is a widely used debugging information format
• DWARF uses Debugging Information Entry (DIE) data structure

• A DIE has a tag (DW_TAG_variable, DW_TAG_pointer_type, 
DW_TAG_subprogram)

• And attributes (key-value pairs)

• DIE attributes can reference other DIEs



Working with DWARF

• Use -g flag to enable DWARF in the compiler
• GDB and LLDB are the most used debuggers on Unix-like platfroms
• libdwarf – C library for working with DWARF (

http://www.prevanders.net/dwarf.html)
• dwex – GUI for visualizing DWARF (https://github.com/sevaa/dwex) 

http://www.prevanders.net/dwarf.html
https://github.com/sevaa/dwex


PE and PDB

• Portable Executable (PE) is an executable file format on Windows
• Program database (PDB) is a debug info file format on Windows
• PE is very much like ELF
• Unlike DWARF, PDB is typically stored as an external file



ELF and PE



From LLVM IR to DWARF

LLVM IR:
https://godbolt.org/z/ecn15d566 
Assembler:
https://godbolt.org/z/oW19bY35E

https://godbolt.org/z/ecn15d566
https://godbolt.org/z/oW19bY35E


ptrace

https://man7.org/linux/man-pages/man2/ptrace.2.html 

• Attach to process
• Read/write registers
• Read/write memory
• Signal on traps
• Trace syscalls (emulated capability) 

https://man7.org/linux/man-pages/man2/ptrace.2.html


Debugger Engine

• Debugger Engine provides an interface for examining and manipulating 
running processes

• Debugger Engine can be used to both write debugger extensions (e.g., for 
WinDbg) and full-featured debuggers

• Debugger Markup Language is similar to HTML, but for debug info
• Full docs: 

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
debugger-engine-and-extension-apis
 

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-engine-and-extension-apis
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-engine-and-extension-apis


Debugger features

• Breakpoints
• Step-by-step execution
• Local variables overview

and many others…



Breakpoints

• Essential debugging tool
• Two very different kind of breakpoints

• Hardware – supported by CPU, limited number 
of BPs

• Software – replace instruction at address with 
halt/trap/interrupt and then replace back with 
original instruction 

GDB: break <file>:<line>
LLDB: breakpoint set -l <line>



Step-by-step execution

Stepping commands let developers execute their program one line or 
instruction at a time. This helps in closely monitoring the changes in 
program state and variable values

GDB/LLDB:
step
next



Inspect local variables and stack

See current values of the variables

GDB:
print <variable>
LLDB:
frame variable [variable]



Stack trace

Stack tracing provides a look at the function call stack at any point in a 
program's execution. This is useful for understanding the sequence of 
function calls leading to the current point.

GDB/LLDB:
backtrace
bt



Watchpoints

Watchpoints are similar to breakpoints but are triggered by changes in the 
value of a variable rather than the execution of a specific line of code.

GDB:
watch <variable>
LLDB:
watchpoint set variable 
<variable>



Watchpoints

Example



 Conditional breakpoints

These are breakpoints that are triggered only if a specified condition is true
Condition is checked every time when program reaches particular line of 
code

GDB:
break [location] if [condition]
LLDB:
breakpoint set --name [function] --condition 
'[condition]'



Modifying Program State

Debuggers often allow altering the state of the program, such as changing 
variable values or jumping to different points in the code.

GDB:
set var <variable>=<value>
LLDB:
expression <variable> = <value>



Modifying Program State



Remote debugging

This feature enables the debugging of a program running on a different 
machine than the debugger, which is useful for testing in different 
environments or on different hardware.



LLDB architecture
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Expression evaluation

• Parsing programming languages is still a challenge for debuggers
• Hard to keep up with all new features

• For C++ LLDB uses a full Clang instance
• Generate AST for given expression and try to generate a DWARF expression or JIT 

code



GDB remote protocol

• Exchange textual messages in the format

• Checksum is modulo 256 sum of all characters between $ and #
• Most common packets

•? – query reason for halt
•b addr,mode – set breakpoint
•c addr – continue at addr
•g – read general registers
•g XX... – write general registers
•m addr,length - read memory
•m addr,length:XX… - write memory

-> $packet-data#checksum 
<- + 

https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html 

https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html


Python interface

• LLDB has flexible scripting facilities
• Interfaces to control entire debugging session
• Custom debugger commands
• Pretty printers

• Customize debugger to support your data structures



Time travel

• Time travel debugging is the ability to step back one or more instructions
• Basic principle: save state in particular points of program execution and 

restore it
• Typical implementation ideas:

• Virtual machine, that saves the whole processor state
• Save state on perf counters change only
• Use hardware assistance (Intel PT, ARM CoreSight)

• Limitations:
• Networking, GPUs, other peripherals
• Multithreading



More useful materials on LLDB

LLDB tutorial: https://lldb.llvm.org/use/tutorial.html 
GDB to LLDB commands mapping: https://lldb.llvm.org/use/map.html 

https://lldb.llvm.org/use/tutorial.html
https://lldb.llvm.org/use/map.html


Test

https://forms.gle/VGhg53cKmkHoVtPw9 
Submission time: 10 minutes 

Backup: me@gooddoog.ru 

https://forms.gle/VGhg53cKmkHoVtPw9
mailto:me@gooddoog.ru


Extra materials
• Greg Law "Give me 15 minutes & I'll change your view of GDB” - https://www.youtube.com/watch?v=PorfLSr3DDI 

• LLVM Developers’ Meeting: R. Isemann “Better C++ debugging using Clang Modules in LLDB” - 
https://www.youtube.com/watch?v=vuNZLlHhy0k 

https://www.youtube.com/watch?v=PorfLSr3DDI
https://www.youtube.com/watch?v=vuNZLlHhy0k
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