
Compilers 101
Debuggers

Previously…
Preprocessing

Lexical analysis

Syntax analysis

Semantic analysis

IR Generation

IR Optimization

Code generation

Optimization

Fronten
d

Middle-end

Backend

Why debugging?

• Static analysis does not discover many kinds of errors (especially, logic
errors)

• Retrieve runtime information
• Need some insight into running programs
• Allow to change execution flow without recompilation

Debuggers in a nutshell

• Ability to control execution
• Resume after signal/trap

• Ability to read/write memory
• Registers and RAM

• Mapping from binary code to source

Executable and linkable format (ELF)

• ELF is a common executable file format
for Unix-like systems

• File is divided in multiple sections
• Sections can be read-only and executable

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

DWARF

• DWARF is a widely used debugging information format
• DWARF uses Debugging Information Entry (DIE) data structure

• A DIE has a tag (DW_TAG_variable, DW_TAG_pointer_type,
DW_TAG_subprogram)

• And attributes (key-value pairs)

• DIE attributes can reference other DIEs

Working with DWARF

• Use -g flag to enable DWARF in the compiler
• GDB and LLDB are the most used debuggers on Unix-like platfroms
• libdwarf – C library for working with DWARF (

http://www.prevanders.net/dwarf.html)
• dwex – GUI for visualizing DWARF (https://github.com/sevaa/dwex)

http://www.prevanders.net/dwarf.html
https://github.com/sevaa/dwex

PE and PDB

• Portable Executable (PE) is an executable file format on Windows
• Program database (PDB) is a debug info file format on Windows
• PE is very much like ELF
• Unlike DWARF, PDB is typically stored as an external file

ELF and PE

From LLVM IR to DWARF

LLVM IR:
https://godbolt.org/z/ecn15d566
Assembler:
https://godbolt.org/z/oW19bY35E

https://godbolt.org/z/ecn15d566
https://godbolt.org/z/oW19bY35E

ptrace

https://man7.org/linux/man-pages/man2/ptrace.2.html

• Attach to process
• Read/write registers
• Read/write memory
• Signal on traps
• Trace syscalls (emulated capability)

https://man7.org/linux/man-pages/man2/ptrace.2.html

Debugger Engine

• Debugger Engine provides an interface for examining and manipulating
running processes

• Debugger Engine can be used to both write debugger extensions (e.g., for
WinDbg) and full-featured debuggers

• Debugger Markup Language is similar to HTML, but for debug info
• Full docs:

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
debugger-engine-and-extension-apis

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-engine-and-extension-apis
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-engine-and-extension-apis

Debugger features

• Breakpoints
• Step-by-step execution
• Local variables overview

and many others…

Breakpoints

• Essential debugging tool
• Two very different kind of breakpoints

• Hardware – supported by CPU, limited number
of BPs

• Software – replace instruction at address with
halt/trap/interrupt and then replace back with
original instruction

GDB: break <file>:<line>
LLDB: breakpoint set -l <line>

Step-by-step execution

Stepping commands let developers execute their program one line or
instruction at a time. This helps in closely monitoring the changes in
program state and variable values

GDB/LLDB:
step
next

Inspect local variables and stack

See current values of the variables

GDB:
print <variable>
LLDB:
frame variable [variable]

Stack trace

Stack tracing provides a look at the function call stack at any point in a
program's execution. This is useful for understanding the sequence of
function calls leading to the current point.

GDB/LLDB:
backtrace
bt

Watchpoints

Watchpoints are similar to breakpoints but are triggered by changes in the
value of a variable rather than the execution of a specific line of code.

GDB:
watch <variable>
LLDB:
watchpoint set variable
<variable>

Watchpoints

Example

 Conditional breakpoints

These are breakpoints that are triggered only if a specified condition is true
Condition is checked every time when program reaches particular line of
code

GDB:
break [location] if [condition]
LLDB:
breakpoint set --name [function] --condition
'[condition]'

Modifying Program State

Debuggers often allow altering the state of the program, such as changing
variable values or jumping to different points in the code.

GDB:
set var <variable>=<value>
LLDB:
expression <variable> = <value>

Modifying Program State

Remote debugging

This feature enables the debugging of a program running on a different
machine than the debugger, which is useful for testing in different
environments or on different hardware.

LLDB architecture

client

Server

Linux

macOS

Windows

…

CLI

GDB remote protocol

Expression evaluation

• Parsing programming languages is still a challenge for debuggers
• Hard to keep up with all new features

• For C++ LLDB uses a full Clang instance
• Generate AST for given expression and try to generate a DWARF expression or JIT

code

GDB remote protocol

• Exchange textual messages in the format

• Checksum is modulo 256 sum of all characters between $ and #
• Most common packets

•? – query reason for halt
•b addr,mode – set breakpoint
•c addr – continue at addr
•g – read general registers
•g XX... – write general registers
•m addr,length - read memory
•m addr,length:XX… - write memory

-> $packet-data#checksum
<- +

https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html

https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html

Python interface

• LLDB has flexible scripting facilities
• Interfaces to control entire debugging session
• Custom debugger commands
• Pretty printers

• Customize debugger to support your data structures

Time travel

• Time travel debugging is the ability to step back one or more instructions
• Basic principle: save state in particular points of program execution and

restore it
• Typical implementation ideas:

• Virtual machine, that saves the whole processor state
• Save state on perf counters change only
• Use hardware assistance (Intel PT, ARM CoreSight)

• Limitations:
• Networking, GPUs, other peripherals
• Multithreading

More useful materials on LLDB

LLDB tutorial: https://lldb.llvm.org/use/tutorial.html
GDB to LLDB commands mapping: https://lldb.llvm.org/use/map.html

https://lldb.llvm.org/use/tutorial.html
https://lldb.llvm.org/use/map.html

Test

https://forms.gle/VGhg53cKmkHoVtPw9
Submission time: 10 minutes

Backup: me@gooddoog.ru

https://forms.gle/VGhg53cKmkHoVtPw9
mailto:me@gooddoog.ru

Extra materials
• Greg Law "Give me 15 minutes & I'll change your view of GDB” - https://www.youtube.com/watch?v=PorfLSr3DDI

• LLVM Developers’ Meeting: R. Isemann “Better C++ debugging using Clang Modules in LLDB” -
https://www.youtube.com/watch?v=vuNZLlHhy0k

https://www.youtube.com/watch?v=PorfLSr3DDI
https://www.youtube.com/watch?v=vuNZLlHhy0k

	Slide 1
	Previously…
	Why debugging?
	Debuggers in a nutshell
	Executable and linkable format (ELF)
	DWARF
	Working with DWARF
	PE and PDB
	ELF and PE
	From LLVM IR to DWARF
	ptrace
	Debugger Engine
	Debugger features
	Breakpoints
	Step-by-step execution
	Inspect local variables and stack
	Stack trace
	Watchpoints
	Watchpoints (2)
	Conditional breakpoints
	Modifying Program State
	Modifying Program State (2)
	Remote debugging
	LLDB architecture
	Expression evaluation
	GDB remote protocol
	Python interface
	Time travel
	More useful materials on LLDB
	Test
	Extra materials

