Compilers 101

Compilation flow C/CPP file
. Preprocessing
® |sthatit?
® Can we have different inputs? Lexical analysis
® |s there a chance for an alternative Syntax analysis
?
flow: Semantic analysis

IR Generation
IR Optimization
Optimization

Code generation

Object file

Today

* Why MLIR?

* MLIR history

* MLIR description
* Usage scenarios

Your Typical HPC Setup

Compute Network Storage

DSHW
e GRAPE
OeMP OpenCLTMi
~>%\(0OpenACC DSLs
25 | ppR| == e Fbb
3 lUUHJ lUUKJ R i : " CLAW .. ‘
ilk? : | : éﬁi;p GASNet, Charm++ '
clle e s | "
: [DUR] [DDR] T = s
Kokkos? A (cHaPEL
C++ Standard fFs == =Y

https://llvm-hpc-2020-workshop.github.io/presentations/llvmhpc2020-amini.pdf

https://llvm-hpc-2020-workshop.github.io/presentations/llvmhpc2020-amini.pdf

MLIR intro

MLIR stands for Multi-Level Intermediate Representation

* MLIR is a framework for building custom intermediate representations
* Collection of basic algorithms for general-purpose IR transformations

=

e Basic data structures

e Custom parsers and printers MLIR

AMDQ1 arm ({cerebras Google

GRAFHCORE ~habana (i@

NVIDIA. Qualcomm >l|SambaNova SAMSUNG

™| £ XILINX

https://blog.gooqgle/technology/ai/mlir-accelerating-ai-open-source-infrastructure/

https://blog.google/technology/ai/mlir-accelerating-ai-open-source-infrastructure/

MLIR

Applications/
Compilers

MLIR

HLS/Chisel

ONNX

PyTorch

TensorFlow

Dialect

Shared
Optimizations

affine

arith

scf

_____________ﬁE;____________d

Backends

LLVM IR

Hardware
Devices

CIRCT
(FIRRTL)

CPU

GPU

SPIR-V
for GPU

FPGA

TPU

XPU

TPU IR

http://lastweek.io/notes/MLIR/

http://lastweek.io/notes/MLIR/

MLIR

* Supports diverse domains
* Machine Learning
* Hardware development
e Custom Domain Specific Languages (DSL)
e LLVMIR

* Provides a view on the source code from different levels

MLIR history: pre-historic era

* Before MLIR was conceived, the LLVM project already had a powerful
intermediate representation (IR) that was highly effective for optimizing
and generating machine code for CPUs.

* However, as the landscape of computing hardware grew to include
GPUs, TPUs, and other accelerators, it became apparent that LLVM IR
was not ideally suited for representing the high-level, domain-specific
abstractions needed by these new architectures.

MLIR history: beginning

* MLIR was officially announced and open-sourced by Google in April
2019, but its development started much earlier, around 2018, as a
collaboration between different teams within Google and eventually
with external contributors

* The project was born out of the need for an infrastructure that could
bridge the gap between high-level, domain-specific representations of
programs and the low-level, hardware-specific code required to execute
them efficiently

MLIR history: nowadays

MLIR infrastructure is being developed rapidly
Top industry companies use that:

* Google

* Meta

* Microsoft
* [ntel

e AMD

other...

Operations, Not Instructions

e No predefined set of instructions
e Operations are like “opaque functions” to MLIR

Number of Dialect Index in List of attributes:
value returned prefix Opld Argument ihe producer’s results constant named arguments

\o Lol /

%res:2 = "mydialect.morph"(%input#3) { some.attribute = true, other_attribute = 1.5 }

. (!Imydialect<"custom_type">) -> (Imydialect<"other type">, Imydialect<"other type">)
loc(callsite("foo" at "mysource.cc":710:8))
Name of the \
results Dialect prefix Opaque string
for the type /
Dialect specific Mandatory and

type Rich Location

@ https:/mlir.llvm.org/docs/LangRef/#operations
https://github.com/llvm/llvm-project/blob/master/mlir/include/mlir/IR/Operation.h#L 27

Dialects

* Extensible collections of operations and types that represent various
evels of abstraction or domains.
* Dialects represent modular structure of combining operations

* Dialects are basically custom IRs
* Custom data types, custom operations, custom syntax
* Example dialects: arithmetic, affine, omp, spv, linalg

Dialects

Documentation:
https://mlir.llvm.org/docs/Dialects/

'acc' Dialect
'affine' Dialect

'amdgpu’' Dialect

'amx' Dialect
'arith' Dialect
'arm neon' Dialect

'arm sve' Dialect
'ArmSME' Dialect
'‘async' Dialect

'bufferization' Dialect
'cf' Dialect

‘complex’ Dialect
'dlti' Dialect

‘emitc' Dialect

'func' Dialect
'gpu’ Dialect
'index' Dialect
lirdl' Dialect
'linalg' Dialect

'llvm' Dialect

'math' Dialect

'memref' Dialect

'mesh' Dialect

'ml program' Dialect
'mpi' Dialect
'nvgpu' Dialect

'nvvm' Dialect

'omp' Dialect

'pdl interp' Dialect
'pdl' Dialect
'guant' Dialect

'rocdl' Dialect

'scf' Dialect
'shape' Dialect
'sparse tensor' Dialect

'tensor' Dialect
'ub' Dialect
'vcix' Dialect

'vector' Dialect

'x86vector' Dialect

Builtin Dialect

SPIR-V Dialect

Tensor Operator Set Architecture (TO

A) Dialect

Transform Dialect

https://mlir.llvm.org/docs/Dialects/
https://mlir.llvm.org/docs/Dialects/OpenACCDialect/
https://mlir.llvm.org/docs/Dialects/Affine/
https://mlir.llvm.org/docs/Dialects/AMDGPU/
https://mlir.llvm.org/docs/Dialects/AMX/
https://mlir.llvm.org/docs/Dialects/ArithOps/
https://mlir.llvm.org/docs/Dialects/ArmNeon/
https://mlir.llvm.org/docs/Dialects/ArmSVE/
https://mlir.llvm.org/docs/Dialects/ArmSME/
https://mlir.llvm.org/docs/Dialects/AsyncDialect/
https://mlir.llvm.org/docs/Dialects/BufferizationOps/
https://mlir.llvm.org/docs/Dialects/ControlFlowDialect/
https://mlir.llvm.org/docs/Dialects/ComplexOps/
https://mlir.llvm.org/docs/Dialects/DLTIDialect/
https://mlir.llvm.org/docs/Dialects/EmitC/
https://mlir.llvm.org/docs/Dialects/Func/
https://mlir.llvm.org/docs/Dialects/GPU/
https://mlir.llvm.org/docs/Dialects/IndexOps/
https://mlir.llvm.org/docs/Dialects/IRDL/
https://mlir.llvm.org/docs/Dialects/Linalg/
https://mlir.llvm.org/docs/Dialects/LLVM/
https://mlir.llvm.org/docs/Dialects/MathOps/
https://mlir.llvm.org/docs/Dialects/MemRef/
https://mlir.llvm.org/docs/Dialects/Mesh/
https://mlir.llvm.org/docs/Dialects/MLProgramOps/
https://mlir.llvm.org/docs/Dialects/MPI/
https://mlir.llvm.org/docs/Dialects/NVGPU/
https://mlir.llvm.org/docs/Dialects/NVVMDialect/
https://mlir.llvm.org/docs/Dialects/OpenMPDialect/
https://mlir.llvm.org/docs/Dialects/PDLInterpOps/
https://mlir.llvm.org/docs/Dialects/PDLOps/
https://mlir.llvm.org/docs/Dialects/QuantDialect/
https://mlir.llvm.org/docs/Dialects/ROCDLDialect/
https://mlir.llvm.org/docs/Dialects/SCFDialect/
https://mlir.llvm.org/docs/Dialects/ShapeDialect/
https://mlir.llvm.org/docs/Dialects/SparseTensorOps/
https://mlir.llvm.org/docs/Dialects/TensorOps/
https://mlir.llvm.org/docs/Dialects/UBOps/
https://mlir.llvm.org/docs/Dialects/VCIXDialect/
https://mlir.llvm.org/docs/Dialects/Vector/
https://mlir.llvm.org/docs/Dialects/X86Vector/
https://mlir.llvm.org/docs/Dialects/Builtin/
https://mlir.llvm.org/docs/Dialects/SPIR-V/
https://mlir.llvm.org/docs/Dialects/TOSA/
https://mlir.llvm.org/docs/Dialects/TOSA/
https://mlir.llvm.org/docs/Dialects/Transform/

func. func @vector add(%A: vector<100xf32>, %B: vector<100xf32>) -> vector<100xf32> {
%3C = arith.addf %A, %B : vector<l00xf32>

return %C : vector<l1l00xf32>

https://godbolt.orq/z/0j1 TErxv9

Vector:

Multi level examples

func.func @vector add(%A: memref<100xf32>, %B: memref<l00xf32>, %C: memref<100xf32>) ({
affine.for %i = 0 to 100 {
%a = affine.load %A[%i] : memref<l100xf32>
= affine.load %B[%i] : memref<l100xf32>
$sum = arith.addf %a, %b : £32

affine.store %sum, %C[%i] : memref<l100xf32>

Affine: https://godbolt.ora/z/P7KTrW665 ™~

func. func @vector add(%A: memref<100xf32>, %B: memref<100xf32>, %C: memref<l100xf32>) ({

%c0 = arith.cor 0 : index

%cl00 = arith.constant 100 : index
%cl = arith.c ' : index
scf.for %i = %c0 to %cl00 step %cl {

$a = memref.load %A[%i] : memref<l100xf32>

$b = memref.load %B[%i] : memref<100xf32>
$sum = arith.addf %a, %b : £32

memref.store %sum, %C[%1i] : memref<l00xf32>

}

return

scf + memref: https://godbolt.org/z/0883bE|r7

https://godbolt.org/z/P7KTrW665
https://godbolt.org/z/oj1TErxv9
https://godbolt.org/z/o883bEjr7

MLIR transformations

Affine -> scf:

https://godbolt.org/z/zcYnsTEvz

scf -> cf:

https://godbolt.org/z/9501nvrsM

SCF - structured control flow

CF - control flow

https://godbolt.org/z/zcYnsTEvz
https://godbolt.org/z/95o1nvrsM

Why do we need dialects?

e MLIR is suited to define IRs on different levels of abstractions

* Built-in dialects
* represent more or less generic operations (arith, scf, memref, llvm)
e operations used in LLVM stack and needed in the community (x86vector,
arm_sve)
* |t provides an infrastructure to add different dialects
ML frameworks use that (PyTorch aten dialect, onnx dialect, tf dialect) to
represent supported network layers for further lowering

Recursive nesting: Operations -> Regions -> Blocks

%results:2 = "d.operation"(%arge, %argl) ({

// Regions belong to Ops and can have multiple blocks. Region
“block(%argument: !d.type): Block
%value = "nested.operation"() ({
// Ops can contain nested regions. Region

"d.op”"() :+ () -> ()
) : () -> (!'d.other_type)
"consume.value" (%value) : (!d.other_type) -> ()
~other_block:
| "d.terminator" () [“block(%argument : !d.type)] : ()

- £)
}) : () -> (!d.type, !d.other_type)

e Regions are list of basic blocks nested inside of an operation.
o Basic blocks are a list of operations: the IR structure is recursively nested!

e Conceptually similar to function call, but can reference SSA values defined outside.

e SSA values defined inside don't escape.

https://mlir.llvm.org/docs/Tutorials/UnderstandingThelRStructure/
@ https://mlir.llvm.org/docs/LangRef/#high-level-structure

Block arguments

func @example_function() { . .
I e Mechanism to modify

"branch_conditional”(%@) ({ variables in a structured
' way that fit the similar

“bb@(%arg@ 132) .
purpose as PHI nodes in

%1 = "some_other Dperatlon”(%arg@) :-(i32) -—>-132

"another_operation"(%1) : (i32) — () LLVM IR
"branch" (%1) : (i32) — ()

“bbl(%argl 132) 0 gu
"yet_another operatlon“(%argl) :-(i32) -—=>- ()
"branch" (%sargl) : (i32) — ()
1 (132) = ()

Operations

* Describe some action
* Take arguments and returns them

* Have generic op representation and custom printers
* Example on the next slide

" A=’ https://godbolt.org/z/cfiY37527

https://godbolt.org/z/cfjY375z7

Example: Afﬁne DiaIeCt With custom parsing/printing: affine.for

func @test() { operations with an attached region feels

affine.for %k = 8 to 10 { —— like aregular for!

affine.for %1 = 8 to 10 {
affine.if (d@) : (8*d6 - 4 >= 0, -8*d0 + 7 >= 0)(%k) {
// Dead code, because no multiple®pf 8 lies between 4 and 7.

u_f_‘ " %k ’ 3 d - " 2 . 2 . . ege .
00" (%k) ndex) == () Extra semantics constraints in this dialect: the if condition is

) ’ an affine relationship on the enclosing loop indices.
; #set@ = (d@) : (d8 * 8 - 4 >= 0, d8 * -8 + 7 >= 0)
return func @test() {
} "affine.for" () {lower_bound: #map®, step: 1 : index, upper_bound: #map1} : () -> () {

Abb1(%i0: index):
"affine.for"() {lower_bound: #map@, step: 1 : index, upper_bound: #map1} : () -> ()

Abb2(%i1: index):
"affine.if"(%i@) {condition: #set®} : (index) -> () {
"foo"(%i@) : (index) -> ()

"affine.t inator” : -> . . o
} {a/,lgiseeﬂiﬁ = Same code without custom parsing/printing:

} isomorphic to the internal in-memory
"affine.terminator”() : () -> () representation.

}
@ et https://mlir.llvm.org/docs/Dialects/Affine/

Pass infrastructure

* MLIR provides a pass manager
* Passes can be operation-agnostic or be run on specific operation

* Pass manager is multithreaded
* Independent operations can be processed simultaneously

* Pass manager is dynamic
* |.e., allows running another pass manager from within a pass

* MLIR has built-in tools for reproducer generation

mlir-opt

* opt analog for MLIR

* help: |{=| https://godbolt.org/z/x5zjxbg4 T

https://godbolt.org/z/x5zjxbq4T

LLVM as a dialect

%13 = llvm.alloca %arg@ x !llvm.double : (!1lvm.i32) -> !llvm.ptr<double>

%14 = 1lvm.getelementptr %13[%arg0d, %argo]
(!1lvm.ptr<double>, !11lvm.i32, !1lvm.i32) -> !llvm.ptr<double>
%15 = llvm.load %14 : !l1llvm.ptr<double>
llvm.store %15, %13 : !llvm.ptr<double>
%16 = llvm.bitcast %13 : !llvm.ptr<double> to !llvm.ptr<i64>
%17 = llvm.call @foo(%arg@) : (!1lvm.i32) -> !llvm.struct<(i32, double, i32)>
%18 = llvm.extractvalue %17[0] : !llvm.struct<(i32, double, i32)>
%19 = llvm.insertvalue %18, %17[2] : !1llvm.struct<(i32, double, i32)>
%20 = 1llvm.constant(@foo : (!1llvm.i32) -> !llvm.struct<(i32, double, i32)>) :
I1lvm.ptr<func<struct<i32, double, i32> (i32)>>
%21 = llvm.call %20(%arg@) : (!1llvm.i32) -> !llvm.struct<(i32, double, i32)>

@ More intro to MLIR: https://mlir.llvm.org/docs/Tutorials/Toy/

Eric Schweitz (NVIDIA)

LOOPS

// subroutine convolution(r, f, g)
func @convolution(%r : Ifir.box<!fir.array<?:f32>>, %f : Ifirbox<...>, %g : Ifir.box<...>) {
%uf:3 = firbox_dims %f, 0 : (!firbox<...>, index) -> (index, index, index) ... // and %ug:3
fir.loop %n = 1 to %uf#1 {
fir.loop %k =1 to %ug#1 {
%2 = subi %n, %k : index
%3 = fir.coordinate_of %f, %2 : (!firbox<...>, index) -> !fir.ref<f32>
%4 = fir.load %3 : !fir.ref<f32> ... // and likewise %6 = load g[k]

%7 = mulf %6, %4 : f32 ... 1/ and likewise %9 = load r[n]
%10 = addf %9, %7 : 32
fir.store %10 to %8 : Ifir.ref<f32>

133

Advantages of MLIR

* Modularity and extensibility
* Easy to introduce needed dialects, passes and build the pipeline
* Enables with better compiler development quality and rapid prototyping

* Support for generic and domain specific optimizations
* Enhanced reusability and interoperability

* Improved analysis and debugging

* Facilitates Heterogeneous Hardware Support

Disadvantages of MLIR

* |ncreased Complexity
* MLIR’s multi-level approach adds extra layers of abstraction compared to
traditional single-level IRs
* As aresult, steep learning curve

* Lack of stable API
* Every commit to LLVM repo can potentially break the IR

* Dialects zoo
* Everyone comes up with their own dialect

* Lack of tooling and ecosystem maturity
* While MLIR is continuously evolving, its ecosystem is still maturing

Where MLIR is used?

* flang - Fortran compiler

* clang-based MLIR codegen for C/C++:
* clangir
e Polygeist (C/C++/CUDA C++)

* CIRCT Project

* Mojo
List of users updated by LLVM community:
e https://mlir.llvm.org/users/

https://mlir.llvm.org/users/

Eric Schweitz (NVIDIA)

FLANG

FIR/MLIR
optimizer

FIR: high-level Fortran IR
Built on the MLIR infrastructure

Common path from syntactic to static analysis and code gen

Shrink abstraction gap: core Fortran operational properties

Focus on writing Fortran aware optimizations

Separation of concerns: constraints checking vs. optimizing computation

3 ZINVIDIA.

CUDA C++

Polygeist

Polygeist
Convert C/C++/CUDA C++ to MLIR and apply

polyhedral transformations to run it faster

Project: https://github.com/llvm/Polygeist LLVM toolchain

LLVM IR
(x86/ARM)

LLVM toolchain

x86 or ARM

binary

https://github.com/llvm/Polygeist

clangir

ClangIR integrates Clang’s C/C++ front-end capabilities with the MLIR
framework, enabling a layered approach to transforming and optimizing

COd e Lifetime
Checker
Merge) Idiom
Cleanups Recognizer a]
ClangIR is inspired in the success of other CIRGenLib MW ClanglR Sl
. . Clang Passes
languages that greatly benefit from a middle-level Bl Driver IEEEEEE
IR, such as Swift and Rust. Particularly, optionally
attaching AST nodes to CIR operations is inspired

Generator

(ASTCoNSUMET) | } Affine S LLVM
: : Lowerin

by SIL references to AST nodes in Swift.

clang-tidy L 4
(ClangTidyCheck) ¢

CodeGen Lib ﬁ

https://github.com/llvm/clangir
https://llivm.qgithub.io/clangir/

https://github.com/llvm/clangir
https://llvm.github.io/clangir/

Mojo ¢ language

* Mojo combines the usability of Python with the performance of C,
unlocking unparalleled programmability of Al hardware and

extensibility of Al models.
* Mojo leverages MLIR, which enables Mojo developers to take

advantage of vectors, threads, and Al hardware units.

https://www.modular.com/max/mojo

https://www.modular.com/max/mojo

Example: CIRCT Project

Apply MLIR and the LLVM development methodology to the domain of hardware design tools

Circuit IR Compilers and Tools:

I Amalee Wilson

MLIR for Hardware Design

Stephen Neuendorffer Chris Lattner Other Collaborators
) : Stanford University Xilinx SiFive Microsoft, PNNL, ETH, EPFL
https://github.com/livm/circt amalee@cs.stanford.edu stephenn@xilinx.com clattner@sifive.com U. Edinburgh, Cornell, lllinois
Introduction v

« Designing and programming complex, heterogeneous systems-on-chip mixing
general purpose and specialized components is difficult. The EDA industry has
well-known and widely used proprietary and open source tools. However, these tools are often
inconsistent, have usability concerns, and were not designed together into a common platform.

+ The CIRCT project is a new effort to apply MLIR and the LLVM development
methodology to the domain of hardware design tools. A coherently designed set of
abstractions leveraging best practices in compiler infrastructure and compiler design techniques
will result in a new generation of tools for both designing and programming complex,
heterogeneous systems-on-chip mixing general purpose and specialized components.

Aim
Create a comprehensive open-source infrastructure capable of representing
multiple levels of abstraction to improve both hardware and software.

Hardware Software
* Accelerator Design * Accelerator Programming
« Circuit Synthesis + Code Generation
* Memory Hierarchy + Memory Allocation
« Interconnect Design + Host Code Partitioning
+ System Simulation « JIT Execution

Next generation open source synthesis infrastructure
- LLVM incubator project

Focus on RTL level and above

- Interfaces with SystemVerilog, Chisel, C++
- FPGA+ASIC targets
- Integrated simulation through LLVM backends

Tensor/ML E

Standard
Dialect

:Standard to
:Handshake lowering

Dataflow/handshake
Async
Events +
DMA

Handshake

/Finite-State Machine +

‘Handshake to
‘FIRRTL lowering

B

Datapath (FSMD)
- parser
& Register-transfer Level 4
FIRRTL to

RTL lowering

Behavioral IR tg. -
structural IR -~

lowering l

FIRRTL Dialect

etlists
representation for hardware description
IETsI=1a13

m/'&ae Schuiki et al.'s PLDI paper: Structural Circuit
LLHD: a multi-level intermediate N

Leverage unique MLIR Capabilities
- Parallel Compilation => Reduced design time

- Unified Framework => Better integration between high level and low level tools
- Cyclic SSA graphs (contributed by CIRCT developers) => hardware-oriented sema

- Multiple Abstractions/Dialect => Improved predictability Poster fro m LLVM Dev M eeti ng'zo

Verilog
Emission

Toy Tutorial

This tutorial runs through the implementation of a basic toy language on top of MLIR. The goal of this tutorial is

to introduce the concepts of MLIR; in particular, how dialects can help easily support language specific

constructs and transformations while still offering an easy path to lower to LLVM or other codegen

infrastructure. This tutorial is based on the model of the LLVM Kaleidoscope Tutorial.

Another good source of introduction is the online recording from the 2020 LLVM Dev Conference (slides).

This tutorial assumes you have cloned and built MLIR; if you have not yet done so, see Getting started with
MLIR.

This tutorial is divided in the following chapters:

o Chapter #1: Introduction to the Toy language and the definition of its AST.

e Chapter #2: Traversing the AST to emit a dialect in MLIR, introducing base MLIR concepts. Here we show
how to start attaching semantics to our custom operations in MLIR.

» Chapter #3: High-level language-specific optimization using pattern rewriting system.

o Chapter #4: Writing generic dialect-independent transformations with Interfaces. Here we will show how
to plug dialect specific information into generic transformations like shape inference and inlining.

o Chapter #5: Partially lowering to lower-level dialects. We'll convert some of our high level language

specific semantics towards a generic affine oriented dialect for optimization.

e Chapter #6: Lowering to LLVM and code generation. Here we'll target LLVM IR for code generation, and
detail more of the lowering framework.

o Chapter #7: Extending Toy: Adding support for a composite type. We'll demonstrate how to add a custom

type to MLIR, and how it fits in the existing pipeline.

https://mlir.llvm.org/docs/Tutorials/Toy/

https://mlir.llvm.org/docs/Tutorials/Toy/

Next time

* Connection with LLVM

* Available transformations and optimizations overview
* Custom dialects

* Writing a pass

Test

https://forms.gle/bR6K58M7p9YH6QXS8
Submission time: 10 minutes

B 4yeM cocToAaT otThmnymna ctpoennss MLIR u LLVM IR?

Your answer

KakoBbl npenMmylectBa U Hegoctatkm MLIR?

Your answer

Backup: me@gooddoog.ru

https://forms.gle/bR6K58M7p9YH6QxS8
mailto:me@gooddoog.ru

Extra materials

LLVM Compiler Infrastructure in HPC Workshop - https://www.youtube.com/watch?v=0bxyZDGs-aA

All MLIR talks: https://mlirllvm.org/talks/

Toy language (MLIR tutorial): https://mlirllvm.org/docs/Tutorials/Toy/Ch-1/

2023 EuroLLVM - What's new in MLIR? https://www.youtube.com/watch?v=LPIRLt9w4b0

https://www.youtube.com/watch?v=0bxyZDGs-aA
https://mlir.llvm.org/talks/
https://mlir.llvm.org/docs/Tutorials/Toy/Ch-1/
https://www.youtube.com/watch?v=LPlRLt9w4b0

	Compilers 101
	Compilation flow
	Today
	Slide 4
	MLIR intro
	MLIR
	MLIR (2)
	MLIR history: pre-historic era
	MLIR history: beginning
	MLIR history: nowadays
	Slide 11
	Dialects
	Dialects (2)
	Multi level examples
	MLIR transformations
	Why do we need dialects?
	Slide 17
	Block arguments
	Operations
	Slide 20
	Pass infrastructure
	mlir-opt
	Slide 23
	Slide 24
	Advantages of MLIR
	Disadvantages of MLIR
	Where MLIR is used?
	Slide 28
	Polygeist
	clangir
	Mojo 🔥 language
	Slide 32
	Slide 33
	Next time
	Test (2)
	Extra materials

