
Compilers 101
MLIR - Part 1

Compilation flow
Preprocessing

Lexical analysis

Syntax analysis

Semantic analysis

IR Generation

IR Optimization

Code generation

Optimization

C/CPP file

Object file

● Is that it?
● Can we have different inputs?
● Is there a chance for an alternative

flow?

Today

• Why MLIR?
• MLIR history
• MLIR description
• Usage scenarios

https://llvm-hpc-2020-workshop.github.io/presentations/llvmhpc2020-amini.pdf

https://llvm-hpc-2020-workshop.github.io/presentations/llvmhpc2020-amini.pdf

MLIR intro
MLIR stands for Multi-Level Intermediate Representation

• MLIR is a framework for building custom intermediate representations
• Collection of basic algorithms for general-purpose IR transformations
• Basic data structures
• Custom parsers and printers

https://blog.google/technology/ai/mlir-accelerating-ai-open-source-infrastructure/

https://blog.google/technology/ai/mlir-accelerating-ai-open-source-infrastructure/

MLIR

http://lastweek.io/notes/MLIR/

http://lastweek.io/notes/MLIR/

MLIR

• Supports diverse domains
• Machine Learning
• Hardware development
• Custom Domain Specific Languages (DSL)
• LLVM IR

• Provides a view on the source code from different levels

MLIR history: pre-historic era

• Before MLIR was conceived, the LLVM project already had a powerful
intermediate representation (IR) that was highly effective for optimizing
and generating machine code for CPUs.

• However, as the landscape of computing hardware grew to include
GPUs, TPUs, and other accelerators, it became apparent that LLVM IR
was not ideally suited for representing the high-level, domain-specific
abstractions needed by these new architectures.

MLIR history: beginning

• MLIR was officially announced and open-sourced by Google in April
2019, but its development started much earlier, around 2018, as a
collaboration between different teams within Google and eventually
with external contributors

• The project was born out of the need for an infrastructure that could
bridge the gap between high-level, domain-specific representations of
programs and the low-level, hardware-specific code required to execute
them efficiently

MLIR history: nowadays

MLIR infrastructure is being developed rapidly
Top industry companies use that:
• Google
• Meta
• Microsoft
• Intel
• AMD

other…

Dialects

• Extensible collections of operations and types that represent various
levels of abstraction or domains.

• Dialects represent modular structure of combining operations
• Dialects are basically custom IRs
• Custom data types, custom operations, custom syntax
• Example dialects: arithmetic, affine, omp, spv, linalg

Dialects

Documentation:
https://mlir.llvm.org/docs/Dialects/

● 'acc' Dialect
● 'affine' Dialect
● 'amdgpu' Dialect
● 'amx' Dialect
● 'arith' Dialect
● 'arm_neon' Dialect
● 'arm_sve' Dialect
● 'ArmSME' Dialect
● 'async' Dialect
● 'bufferization' Dialect
● 'cf' Dialect
● 'complex' Dialect
● 'dlti' Dialect
● 'emitc' Dialect
● 'func' Dialect
● 'gpu' Dialect
● 'index' Dialect
● 'irdl' Dialect
● 'linalg' Dialect
● 'llvm' Dialect
● 'math' Dialect
● 'memref' Dialect
● 'mesh' Dialect

● 'ml_program' Dialect
● 'mpi' Dialect
● 'nvgpu' Dialect
● 'nvvm' Dialect
● 'omp' Dialect
● 'pdl_interp' Dialect
● 'pdl' Dialect
● 'quant' Dialect
● 'rocdl' Dialect
● 'scf' Dialect
● 'shape' Dialect
● 'sparse_tensor' Dialect
● 'tensor' Dialect
● 'ub' Dialect
● 'vcix' Dialect
● 'vector' Dialect
● 'x86vector' Dialect
● Builtin Dialect
● SPIR-V Dialect
● Tensor Operator Set Architecture (TOS

A) Dialect
● Transform Dialect

https://mlir.llvm.org/docs/Dialects/
https://mlir.llvm.org/docs/Dialects/OpenACCDialect/
https://mlir.llvm.org/docs/Dialects/Affine/
https://mlir.llvm.org/docs/Dialects/AMDGPU/
https://mlir.llvm.org/docs/Dialects/AMX/
https://mlir.llvm.org/docs/Dialects/ArithOps/
https://mlir.llvm.org/docs/Dialects/ArmNeon/
https://mlir.llvm.org/docs/Dialects/ArmSVE/
https://mlir.llvm.org/docs/Dialects/ArmSME/
https://mlir.llvm.org/docs/Dialects/AsyncDialect/
https://mlir.llvm.org/docs/Dialects/BufferizationOps/
https://mlir.llvm.org/docs/Dialects/ControlFlowDialect/
https://mlir.llvm.org/docs/Dialects/ComplexOps/
https://mlir.llvm.org/docs/Dialects/DLTIDialect/
https://mlir.llvm.org/docs/Dialects/EmitC/
https://mlir.llvm.org/docs/Dialects/Func/
https://mlir.llvm.org/docs/Dialects/GPU/
https://mlir.llvm.org/docs/Dialects/IndexOps/
https://mlir.llvm.org/docs/Dialects/IRDL/
https://mlir.llvm.org/docs/Dialects/Linalg/
https://mlir.llvm.org/docs/Dialects/LLVM/
https://mlir.llvm.org/docs/Dialects/MathOps/
https://mlir.llvm.org/docs/Dialects/MemRef/
https://mlir.llvm.org/docs/Dialects/Mesh/
https://mlir.llvm.org/docs/Dialects/MLProgramOps/
https://mlir.llvm.org/docs/Dialects/MPI/
https://mlir.llvm.org/docs/Dialects/NVGPU/
https://mlir.llvm.org/docs/Dialects/NVVMDialect/
https://mlir.llvm.org/docs/Dialects/OpenMPDialect/
https://mlir.llvm.org/docs/Dialects/PDLInterpOps/
https://mlir.llvm.org/docs/Dialects/PDLOps/
https://mlir.llvm.org/docs/Dialects/QuantDialect/
https://mlir.llvm.org/docs/Dialects/ROCDLDialect/
https://mlir.llvm.org/docs/Dialects/SCFDialect/
https://mlir.llvm.org/docs/Dialects/ShapeDialect/
https://mlir.llvm.org/docs/Dialects/SparseTensorOps/
https://mlir.llvm.org/docs/Dialects/TensorOps/
https://mlir.llvm.org/docs/Dialects/UBOps/
https://mlir.llvm.org/docs/Dialects/VCIXDialect/
https://mlir.llvm.org/docs/Dialects/Vector/
https://mlir.llvm.org/docs/Dialects/X86Vector/
https://mlir.llvm.org/docs/Dialects/Builtin/
https://mlir.llvm.org/docs/Dialects/SPIR-V/
https://mlir.llvm.org/docs/Dialects/TOSA/
https://mlir.llvm.org/docs/Dialects/TOSA/
https://mlir.llvm.org/docs/Dialects/Transform/

Multi level examples

Affine:

scf + memref:

Vector:

https://godbolt.org/z/P7KTrW665

https://godbolt.org/z/oj1TErxv9

https://godbolt.org/z/o883bEjr7

https://godbolt.org/z/P7KTrW665
https://godbolt.org/z/oj1TErxv9
https://godbolt.org/z/o883bEjr7

MLIR transformations

Affine -> scf:
scf -> cf:

SCF - structured control flow
CF - control flow

https://godbolt.org/z/zcYnsTEvz

https://godbolt.org/z/95o1nvrsM

https://godbolt.org/z/zcYnsTEvz
https://godbolt.org/z/95o1nvrsM

Why do we need dialects?

• MLIR is suited to define IRs on different levels of abstractions
• Built-in dialects

• represent more or less generic operations (arith, scf, memref, llvm)
• operations used in LLVM stack and needed in the community (x86vector,

arm_sve)
• It provides an infrastructure to add different dialects

• ML frameworks use that (PyTorch aten dialect, onnx dialect, tf dialect) to
represent supported network layers for further lowering

Block arguments
Mechanism to modify
variables in a structured
way that fit the similar
purpose as PHI nodes in
LLVM IR

Operations

• Describe some action
• Take arguments and returns them

• Have generic op representation and custom printers
• Example on the next slide
• and here:

https://godbolt.org/z/cfjY375z7

https://godbolt.org/z/cfjY375z7

Pass infrastructure

• MLIR provides a pass manager
• Passes can be operation-agnostic or be run on specific operation
• Pass manager is multithreaded

• Independent operations can be processed simultaneously

• Pass manager is dynamic
• I.e., allows running another pass manager from within a pass

• MLIR has built-in tools for reproducer generation

mlir-opt

• opt analog for MLIR
• help: https://godbolt.org/z/x5zjxbq4T

https://godbolt.org/z/x5zjxbq4T

Advantages of MLIR

• Modularity and extensibility
• Easy to introduce needed dialects, passes and build the pipeline
• Enables with better compiler development quality and rapid prototyping

• Support for generic and domain specific optimizations
• Enhanced reusability and interoperability
• Improved analysis and debugging
• Facilitates Heterogeneous Hardware Support

Disadvantages of MLIR

• Increased Complexity
• MLIR’s multi-level approach adds extra layers of abstraction compared to

traditional single-level IRs
• As a result, steep learning curve

• Lack of stable API
• Every commit to LLVM repo can potentially break the IR

• Dialects zoo
• Everyone comes up with their own dialect

• Lack of tooling and ecosystem maturity
• While MLIR is continuously evolving, its ecosystem is still maturing

Where MLIR is used?

• flang - Fortran compiler
• clang-based MLIR codegen for C/C++:

• clangir
• Polygeist (C/C++/CUDA C++)

• CIRCT Project
• Mojo

List of users updated by LLVM community:
• https://mlir.llvm.org/users/

https://mlir.llvm.org/users/

Polygeist

Convert C/C++/CUDA C++ to MLIR and apply
polyhedral transformations to run it faster

Project: https://github.com/llvm/Polygeist

https://github.com/llvm/Polygeist

clangir

ClangIR integrates Clang’s C/C++ front-end capabilities with the MLIR
framework, enabling a layered approach to transforming and optimizing
code

https://github.com/llvm/clangir
https://llvm.github.io/clangir/

ClangIR is inspired in the success of other
languages that greatly benefit from a middle-level
IR, such as Swift and Rust. Particularly, optionally
attaching AST nodes to CIR operations is inspired
by SIL references to AST nodes in Swift.

https://github.com/llvm/clangir
https://llvm.github.io/clangir/

Mojo language🔥

• Mojo combines the usability of Python with the performance of C,
unlocking unparalleled programmability of AI hardware and
extensibility of AI models.

• Mojo leverages MLIR, which enables Mojo developers to take
advantage of vectors, threads, and AI hardware units.

https://www.modular.com/max/mojo

https://www.modular.com/max/mojo

https://mlir.llvm.org/docs/Tutorials/Toy/

https://mlir.llvm.org/docs/Tutorials/Toy/

Next time

• Connection with LLVM
• Available transformations and optimizations overview
• Custom dialects
• Writing a pass

Test

https://forms.gle/bR6K58M7p9YH6QxS8
Submission time: 10 minutes

Backup: me@gooddoog.ru

https://forms.gle/bR6K58M7p9YH6QxS8
mailto:me@gooddoog.ru

Extra materials
• LLVM Compiler Infrastructure in HPC Workshop - https://www.youtube.com/watch?v=0bxyZDGs-aA
• All MLIR talks: https://mlir.llvm.org/talks/
• Toy language (MLIR tutorial): https://mlir.llvm.org/docs/Tutorials/Toy/Ch-1/
• 2023 EuroLLVM - What's new in MLIR? https://www.youtube.com/watch?v=LPlRLt9w4b0

https://www.youtube.com/watch?v=0bxyZDGs-aA
https://mlir.llvm.org/talks/
https://mlir.llvm.org/docs/Tutorials/Toy/Ch-1/
https://www.youtube.com/watch?v=LPlRLt9w4b0

	Compilers 101
	Compilation flow
	Today
	Slide 4
	MLIR intro
	MLIR
	MLIR (2)
	MLIR history: pre-historic era
	MLIR history: beginning
	MLIR history: nowadays
	Slide 11
	Dialects
	Dialects (2)
	Multi level examples
	MLIR transformations
	Why do we need dialects?
	Slide 17
	Block arguments
	Operations
	Slide 20
	Pass infrastructure
	mlir-opt
	Slide 23
	Slide 24
	Advantages of MLIR
	Disadvantages of MLIR
	Where MLIR is used?
	Slide 28
	Polygeist
	clangir
	Mojo 🔥 language
	Slide 32
	Slide 33
	Next time
	Test (2)
	Extra materials

