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Why debugging?

e Static analysis does not discover many kinds of errors (especially, logic
errors)

* Retrieve runtime information
* Need some insight into running programs
* Allow to change execution flow without recompilation



Debuggers in a nutshell

* Ability to control execution
* Resume after signal/trap

* Ability to read/write memory
* Registers and RAM

* Mapping from binary code to source



Executable and linkable format (ELF)

 ELF is a common executable file format
for Unix-like systems

* File is divided in multiple sections
* Sections can be read-only and executable

https://en.wikipedia.org/wiki/Executable and Linkable Format

ELF header

Program header table

text

rodata

data

&,

Section header table



https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

DWARF

* DWAREF is a widely used debugging information format

 DWAREF uses Debugging Information Entry (DIE) data structure

* ADIE has atag (DW_TAG_variable, DW_TAG_pointer_type,
DW_TAG_subprogram)

* And attributes (key-value pairs)

e DIE attributes can reference other DIEs



Working with DWARF

* Use -g flag to enable DWARF in the compiler
* GDB and LLDB are the most used debuggers on Unix-like platfroms

e libdwarf - C library for working with DWARF (
http://www.prevanders.net/dwarf.html)

* dwex - GUI for visualizing DWARF (https://github.com/sevaa/dwex)



http://www.prevanders.net/dwarf.html
https://github.com/sevaa/dwex

PE and PDB

* Portable Executable (PE) is an executable file format on Windows
* Program database (PDB) is a debug info file format on Windows

* PE is very much like ELF
* Unlike DWAREF, PDB is typically stored as an external file



ELF and PE

DOS Header
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From LLVM IR to DWARFE

1{19}

!DICompileUnit(language: DW L C plus plus 14, file: !1, producer:
IDIFile(filename: "/app/example.cpp"”, directory: "/app", checksumkind: CSK_M
1{i32 !"Dwarf Version", i32 5}
1{i32 !"Debug Info Version", i32 3}
1{i32 !"wchar size", 132 4}

i 132 !"PIC Level", i32 2}
1{i32 !"PIE Level", i32 2}
1{i32 !"uwtable", i32 2}

1{i32 !"frame-pointer", i32 2}

int square(int num) {

return num * num;

!{!"clang version 15.0.0 (https://github.com/llvm/llvm-project.git cacl9f414
g ( P g proj g

stinct !DISubprogram(name: "square", linkageName: " Z6squarei", scope: !1

IDIFile(filename: "example.cpp", directory: "/app", checksumkind: CSK_MD5, c
!DISubroutineType(ty

LLVM IR: 1{114, 114}

!DIBasicType (name:

[E https//gOdbOIt'org/Z/ecn15d566 i;iLocalVariable(n«ame: "num", arg: scope: file: line: 2, type:

!DILocation(line: 2, column:

"i 32, encoding: DW AT

Assembler:

!DILocation(line: umn :
!DILocation(line: column:

[E https://godbolt.org/z/0WI19bY35E |ttt

!DILocation(line: column:



https://godbolt.org/z/ecn15d566
https://godbolt.org/z/oW19bY35E

ptrace

SYNOPSIS top

#include <sys/ptrace.h>

long ptrace(enum ptrace_request request, pid_t pid,
void *addr, void *data);

* Attach to process

* Read/write registers

* Read/write memory

* Signal on traps

* Trace syscalls (emulated capability)

https://man?7.org/linux/man-pages/man2/ptrace.2.html



https://man7.org/linux/man-pages/man2/ptrace.2.html

Debugger Engine

* Debugger Engine provides an interface for examining and manipulating
running processes

e Debugger Engine can be used to both write debugger extensions (e.g., for
WinDbg) and full-featured debuggers

* Debugger Markup Language is similar to HTML, but for debug info

* Full docs:

Nttps://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
debugger-engine-and-extension-apis



https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-engine-and-extension-apis
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-engine-and-extension-apis

Debugger features

* Breakpoints
* Step-by-step execution
* Local variables overview

and many others...



#include <iostream>

#define N 10
Breakpoints it main0) 1
: int-all-=-{1,-2,-3,-4,:5,'6,:7,'8,:9};
for (int 1 =-0; i <N/ 2; ++i) {
: : int-t-=-a[N:=+1---1];
* Essential debugging tool N1 i) = ati
* Two very different kind of breakpoints | e
* Hardware - supported by CPU, limited number _ . e
Of BPS ; std::cout <<-ali];
* Software - replace instruction at address with ' St‘t’““’;t =
) retcurn H

halt/trap/interrupt and then replace back with
original instruction

(1ldb) breakpoint set -1 8

Breakpoint 1: where = a.out main + 80 at main.cpp:8:26, address = 0x0000000100003118

GDB: break <file>:<line>
LLDB: breakpoint set -1 <line>



Step-by-step execution

Stepping commands let developers execute their program one line or
instruction at a time. This helps in closely monitoring the changes in
program state and variable values

(1ldb) r
Process 38039 launched: '/Users/arseniy/Projects/temp/a.out' (armé4)
Process 38039 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason =
frame #0: 0x00000001000030fc a.out main at main.cpp:8:27
5 int main() {
6 int a[] = {
7 for (int 1 = 0; 1 <N / 2; ++1i) {
—-> 8 int t = a[N - 1 - i];
9 alN - 1 - i] = alil;
10 alil] = t;
11 }
(1ldb) n

GDB/ L LDB . Process 38039 stopped
] * thread #1, queue = 'com.apple.main-thread', stop reason =

frame #0: 0x0000000100003114 a.out main at main.cpp:9:26
S;-t:EE'F) 6 int al[] = { E
for (int i = @: . '
int t = alN - 1 - i];

next alN - 1 - i] = a[il;

ali] = t;
}

for (int i = 0; i < N; ++i) {

(1idb) J§



Inspect local variables and stack

See current values of the variables

Process 38039 stopped
k thread #1, queue = 'com.apple.main-thread', stop reason =
frame #0: 0x0000000100003114 a.out main at main.cpp:9:26

int all = {1, 2, 3, 4, 5, 6, 7, 8, 9};

for (int 1 = 0; i <N / 2; ++1) {
int t = alN - 1 - il;
GDB: aEN]— - il = alil;
. : alil = t;
print <variable
L LDB: for (int 1 = 0; i < N; ++i) {

frame variable [varliable]

(1ldb) frame variable
(int[9]) a = ([0] =1, [1] =2, [2] =3, [3] =4, [4] =5, [5] =6, [6] =7, [7] =8, [8] = 9)

(int) i =0
(int) t = 1486422108




Stack trace

Stack tracing provides a look at the function call stack at any point in a
program's execution. This is useful for understanding the sequence of
function calls leading to the current point.

(1ldb) bt
*x thread #1, queue = 'com.apple.main-thread', stop reason =

x frame #0: 0x0000000100003114 a.out main at main.cpp:9:26
frame #1: 0x0000000181aa50e@ dyld start + 2360

GDB/LLDB:
backtrace
bt



arseniy@Arseniys-MacBook-Pro:~/Projects/temp$ 1ldb ./a.out

(1ldb) target create "./a.out"

Current executable set to '/Users/arseniy/Projects/temp/a.out' (armé4).

(1ldb) b main

Breakpoint 1: where = a.out main + 48 at main.cpp:6:9, address = 0x00000001000030dc
(1ldb) r

Process 44495 launched: '/Users/arseniy/Projects/temp/a.out’' (armé4)

[ J
Watc h OI ntS Process 44495 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason =

frame #0: 0x00000001000030dc a.out main at main.cpp:6:9
#define N 10

Watchpoints are similar to

3
4
5 int main() {
6
7
8

—=> int Q[] ={1, 2, 3, 4,5, 6, 7, 8, 9};
. . for (int 1 = 8; 1 <N / 2; ++i) {
breakpomts but are trlggerec.j by : int t=alN -
changes in the value of a variable Process 44495 stopped ,
* thread #1, queue = 'com.apple.main-thread', stop reason =

frame #0: 0x00000001000030e@ a.out main at main.cpp:7:14

rather than the execution of a specific

4
I. f d 5 int main() {

6 int a[] = { 1 £y dy 4y 2, 0, 1, G b
Ineo CO e. - 7 for (int i = 0; i <N / 2; ++i) {

8 int t = alN - 1 - il;

] alN - 1 - i] = alil;

10 ali]l = t;

(1ldb) watchpoint set variable al[5]

Watchpoint created: Watchpoint 1: addr = @x16fdfee78 size = 4 state = enabled type = w
declare @ '/Users/arseniy/Projects/temp/main.cpp:6'

watchpoint spec = 'al[5]"'

new value: 6

(1ldb) ¢

GDB ] Process 44495 resuming
]

Watchpoint 1 hit:

watch <variable> AR

Process 44495 stopped

LLDB . * thread #1, queue = 'com.apple.main-thread', stop reason =
" frame #0: 0x0000000100003128 a.out main at main.cpp:10:16
7 for (int i = [é i<N /] ;o ++i) {
. . 8 int t = alN - 1 - i];
watchpoint set variable ] oi 7 2
—> allil = _;

11 }

<variable> G G 0 T ) 4

13 std::cout << alil;



Conditional breakpoints

These are breakpoints that are triggered only if a specified condition is true

Condition is checked every time when program reaches particular line of
code

GDB:

break [location] 1f [condition]
LLDB:

breakpoint set --name [function] --condition
'[condition]’



Modifying Program State

Debuggers often allow altering the state of the program, such as changing
variable values or jumping to different points in the code.

GDB:

set var <variable>=<value>
LLDB:

expression <variable> = <value>



Modifying Program State

(1ldb) r
There is a running process, kill it and restart?: [Y/n] y
Process 44495 exited with status = 9 (0x00000009) killed
Process 54529 launched: '/Users/arseniy/Projects/temp/a.out' (armé4)
Process 54529 stopped
*x thread #1, queue = 'com.apple.main-thread', stop reason =

frame #0: 0x00000001000030dc a.out main at main.cpp:6:9

#define N 10

= int Q[] = { ’ ’ ’ ’
for (int i =0; i <N/
int t = a[N - 1 - i];
9 alN - 1 - i] = alil;
(1ldb) n
Process 54529 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason =
frame #0: 0x00000001000030e@ a.out main at main.cpp:7:14
4

» 9%

': J'r+15 {

3
4
5 int main() {
6
7
8

int main() {
int all = { ’ ’ ’ ’ ’ ! ’ ’
for (int i = 0; 1 <N / 2; ++i) {
int t = alN -1 - i];
alN - 1 - i] = alil;
10 ali]l = t;
(1ldb) frame variable a
(int[9]) a = ([0] =1, [1] = 2, [2] 6, [6] =7, [7] =8, [8] =9)
(1ldb) expression al[5] += 100500
(int) $0 = 100506
(1ldb) frame variable a
(int[9]) a = ([0] = 1, [1] = 2, [2] 100506, [6] = 7, [7] = 8, [8] = 9)

};




Remote debugging

This feature enables the debugging of a program running on a different
machine than the debugger, which is useful for testing in different
environments or on different hardware.

Host Target
Serial or Ethernet
cccccc tion HEt'I.'l'ﬂrk
ARCH-linux-gdb < > gdbserver Deployed app D
A A I - )
Y Y ’ "
Remote Debugger 1—@ D—F Visual Studio
Binaries and libraries Running program N i
with debugging with binaries and . S
symbols not libraries that can be ‘g' )
stripped stripped

gdb/lldb network debugging MSVC network debugging



LLDB network debugging architecture

client

GDB remote protocol

CLI

Windows




Expression evaluation

* Parsing programming languages is still a challenge for debuggers
* Hard to keep up with all new features

* For C++ LLDB uses a full Clang instance

* Generate AST for given expression and try to generate a DWARF expression or JIT
code



GDB remote protocol

* Exchange textual messages in the format

-> $packet-data#checksum
<-+

* Checksum is modulo 256 sum of all characters between $ and #

* Most common packets

*? — query reason for halt

*b addr,mode — set breakpoint

*Cc addr — continue at addr

*g — read general registers

*g XX... — write general registers
*m addr, length - read memory

*m addr, length:XX.. - write memory

https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html


https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html

Python interface

* LLDB has flexible scripting facilities
* |Interfaces to control entire debugging session
* Custom debugger commands
* Pretty printers

* Customize debugger to support your data structures



Time travel

* Time travel debugging is the ability to step back one or more instructions

* Basic principle: save state in particular points of program execution and
restore it

* Typical implementation ideas:
* Virtual machine, that saves the whole processor state
* Save state on perf counters change only
* Use hardware assistance: Intel Processor Trace (PT), ARM CoreSight

* Limitations:
* Networking, GPUs, other peripherals
* Multithreading



More useful materials on LLDB

LLDB tutorial: https://lldb.llvm.org/use/tutorial.html
GDB to LLDB commands mapping: https://lldb.llvm.org/use/map.html



https://lldb.llvm.org/use/tutorial.html
https://lldb.llvm.org/use/map.html

Test

https://forms.gle/ESvwo5dfw9drBFvk7
Submission time: 10 minutes

B yeM 3aknoyaeTca NnpuHUMUN p360TbI oTnagyuka?

Your answer

Ha kakoM aTtane KoMnunsiumMm reHepupyercs nHbopmMauums, Heobxoanmas Ans
npaBubHOW paboTbl oTNag4uMKa?

Your answer

Backup: me@gooddoog.ru



https://forms.gle/ESvwo5dfw9drBFvk7
mailto:me@gooddoog.ru

Extra materials

* Greg Law "Give me 15 minutes & I'll change your view of GDB” - https://www.youtube.com/watch?v=PorfLSr3DDI

* LLVM Developers’ Meeting: R. Isemann “Better C++ debugging using Clang Modules in LLDB” -
https://www.youtube.com/watch?v=vuNZLIHhyOk

e 2015 EuroLLVM Developers’ Meeting: “Why should | use LLDB?"- https://www.youtube.com/watch?v=JtpQZw9NplU



https://www.youtube.com/watch?v=PorfLSr3DDI
https://www.youtube.com/watch?v=vuNZLlHhy0k
https://www.youtube.com/watch?v=JtpQZw9NpIU
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