Compllers 101

eeeeeeee

Previously...

Preprocessing

Lexical analysis
Syntax analysis
Semantic analysis
IR Generation

IR Optimization

Code generation

Optimization

W
a
o
-

Middle-end

Why debugging?

e Static analysis does not discover many kinds of errors (especially, logic
errors)

* Retrieve runtime information
* Need some insight into running programs
* Allow to change execution flow without recompilation

Debuggers in a nutshell

* Ability to control execution
* Resume after signal/trap

* Ability to read/write memory
* Registers and RAM

* Mapping from binary code to source

Executable and linkable format (ELF)

 ELF is a common executable file format
for Unix-like systems

* File is divided in multiple sections
* Sections can be read-only and executable

https://en.wikipedia.org/wiki/Executable and Linkable Format

ELF header

Program header table

text

rodata

data

&,

Section header table

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

DWARF

* DWAREF is a widely used debugging information format

 DWAREF uses Debugging Information Entry (DIE) data structure

* ADIE has atag (DW_TAG_variable, DW_TAG_pointer_type,
DW_TAG_subprogram)

* And attributes (key-value pairs)

e DIE attributes can reference other DIEs

Working with DWARF

* Use -g flag to enable DWARF in the compiler
* GDB and LLDB are the most used debuggers on Unix-like platfroms

e libdwarf - C library for working with DWARF (
http://www.prevanders.net/dwarf.html)

* dwex - GUI for visualizing DWARF (https://github.com/sevaa/dwex)

http://www.prevanders.net/dwarf.html
https://github.com/sevaa/dwex

PE and PDB

* Portable Executable (PE) is an executable file format on Windows
* Program database (PDB) is a debug info file format on Windows

* PE is very much like ELF
* Unlike DWAREF, PDB is typically stored as an external file

ELF and PE

DOS Header

ELF Header

PE Header

Program Header Table

Optional Header

Section Table

Sections

text

data

ext

rdata

Sections
a Jext -
.data ‘R\
N rodata v
rodata =y
1 .data <+

Section Header Table

(a) WinPE

(b) ELF

From LLVM IR to DWARFE

1{19}

!DICompileUnit(language: DW L C plus plus 14, file: !1, producer:
IDIFile(filename: "/app/example.cpp"”, directory: "/app", checksumkind: CSK_M
1{i32 !"Dwarf Version", i32 5}
1{i32 !"Debug Info Version", i32 3}
1{i32 !"wchar size", 132 4}

i 132 !"PIC Level", i32 2}
1{i32 !"PIE Level", i32 2}
1{i32 !"uwtable", i32 2}

1{i32 !"frame-pointer", i32 2}

int square(int num) {

return num * num;

!{!"clang version 15.0.0 (https://github.com/llvm/llvm-project.git cacl9f414
g (P g proj g

stinct !DISubprogram(name: "square", linkageName: " Z6squarei", scope: !1

IDIFile(filename: "example.cpp", directory: "/app", checksumkind: CSK_MD5, c
!DISubroutineType(ty

LLVM IR: 1{114, 114}

!DIBasicType (name:

[E https//gOdbOIt'org/Z/ecn15d566 i;iLocalVariable(n«ame: "num", arg: scope: file: line: 2, type:

!DILocation(line: 2, column:

"i 32, encoding: DW AT

Assembler:

!DILocation(line: umn :
!DILocation(line: column:

[E https://godbolt.org/z/0WI19bY35E |ttt

!DILocation(line: column:

https://godbolt.org/z/ecn15d566
https://godbolt.org/z/oW19bY35E

ptrace

SYNOPSIS top

#include <sys/ptrace.h>

long ptrace(enum ptrace_request request, pid_t pid,
void *addr, void *data);

* Attach to process

* Read/write registers

* Read/write memory

* Signal on traps

* Trace syscalls (emulated capability)

https://man?7.org/linux/man-pages/man2/ptrace.2.html

https://man7.org/linux/man-pages/man2/ptrace.2.html

Debugger Engine

* Debugger Engine provides an interface for examining and manipulating
running processes

e Debugger Engine can be used to both write debugger extensions (e.g., for
WinDbg) and full-featured debuggers

* Debugger Markup Language is similar to HTML, but for debug info

* Full docs:

Nttps://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
debugger-engine-and-extension-apis

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-engine-and-extension-apis
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-engine-and-extension-apis

Debugger features

* Breakpoints
* Step-by-step execution
* Local variables overview

and many others...

#include <iostream>

#define N 10
Breakpoints it main0) 1
: int-all-=-{1,-2,-3,-4,:5,'6,:7,'8,:9};
for (int 1 =-0; i <N/ 2; ++i) {
: : int-t-=-a[N:=+1---1];
* Essential debugging tool N1 i) = ati
* Two very different kind of breakpoints | e
* Hardware - supported by CPU, limited number _ . e
Of BPS ; std::cout <<-ali];
* Software - replace instruction at address with ' St‘t’““’;t =
) retcurn H

halt/trap/interrupt and then replace back with
original instruction

(1ldb) breakpoint set -1 8

Breakpoint 1: where = a.out main + 80 at main.cpp:8:26, address = 0x0000000100003118

GDB: break <file>:<line>
LLDB: breakpoint set -1 <line>

Step-by-step execution

Stepping commands let developers execute their program one line or
instruction at a time. This helps in closely monitoring the changes in
program state and variable values

(1ldb) r
Process 38039 launched: '/Users/arseniy/Projects/temp/a.out' (armé4)
Process 38039 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason =
frame #0: 0x00000001000030fc a.out main at main.cpp:8:27
5 int main() {
6 int a[] = {
7 for (int 1 = 0; 1 <N / 2; ++1i) {
—-> 8 int t = a[N - 1 - i];
9 alN - 1 - i] = alil;
10 alil] = t;
11 }
(1ldb) n

GDB/ L LDB . Process 38039 stopped
] * thread #1, queue = 'com.apple.main-thread', stop reason =

frame #0: 0x0000000100003114 a.out main at main.cpp:9:26
S;-t:EE'F) 6 int al[] = { E
for (int i = @: . '
int t = alN - 1 - i];

next alN - 1 - i] = a[il;

ali] = t;
}

for (int i = 0; i < N; ++i) {

(1idb) J§

Inspect local variables and stack

See current values of the variables

Process 38039 stopped
k thread #1, queue = 'com.apple.main-thread', stop reason =
frame #0: 0x0000000100003114 a.out main at main.cpp:9:26

int all = {1, 2, 3, 4, 5, 6, 7, 8, 9};

for (int 1 = 0; i <N / 2; ++1) {
int t = alN - 1 - il;
GDB: aEN]— - il = alil;
. : alil = t;
print <variable
L LDB: for (int 1 = 0; i < N; ++i) {

frame variable [varliable]

(1ldb) frame variable
(int[9]) a = ([0] =1, [1] =2, [2] =3, [3] =4, [4] =5, [5] =6, [6] =7, [7] =8, [8] = 9)

(int) i =0
(int) t = 1486422108

Stack trace

Stack tracing provides a look at the function call stack at any point in a
program's execution. This is useful for understanding the sequence of
function calls leading to the current point.

(1ldb) bt
*x thread #1, queue = 'com.apple.main-thread', stop reason =

x frame #0: 0x0000000100003114 a.out main at main.cpp:9:26
frame #1: 0x0000000181aa50e@ dyld start + 2360

GDB/LLDB:
backtrace
bt

arseniy@Arseniys-MacBook-Pro:~/Projects/temp$ 1ldb ./a.out

(1ldb) target create "./a.out"

Current executable set to '/Users/arseniy/Projects/temp/a.out' (armé4).

(1ldb) b main

Breakpoint 1: where = a.out main + 48 at main.cpp:6:9, address = 0x00000001000030dc
(1ldb) r

Process 44495 launched: '/Users/arseniy/Projects/temp/a.out’' (armé4)

[J
Watc h OI ntS Process 44495 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason =

frame #0: 0x00000001000030dc a.out main at main.cpp:6:9
#define N 10

Watchpoints are similar to

3
4
5 int main() {
6
7
8

—=> int Q[] ={1, 2, 3, 4,5, 6, 7, 8, 9};
. . for (int 1 = 8; 1 <N / 2; ++i) {
breakpomts but are trlggerec.j by : int t=alN -
changes in the value of a variable Process 44495 stopped ,
* thread #1, queue = 'com.apple.main-thread', stop reason =

frame #0: 0x00000001000030e@ a.out main at main.cpp:7:14

rather than the execution of a specific

4
I. f d 5 int main() {

6 int a[] = { 1 £y dy 4y 2, 0, 1, G b
Ineo CO e. - 7 for (int i = 0; i <N / 2; ++i) {

8 int t = alN - 1 - il;

] alN - 1 - i] = alil;

10 ali]l = t;

(1ldb) watchpoint set variable al[5]

Watchpoint created: Watchpoint 1: addr = @x16fdfee78 size = 4 state = enabled type = w
declare @ '/Users/arseniy/Projects/temp/main.cpp:6'

watchpoint spec = 'al[5]"'

new value: 6

(1ldb) ¢

GDB] Process 44495 resuming
]

Watchpoint 1 hit:

watch <variable> AR

Process 44495 stopped

LLDB . * thread #1, queue = 'com.apple.main-thread', stop reason =
" frame #0: 0x0000000100003128 a.out main at main.cpp:10:16
7 for (int i = [é i<N /] ;o ++i) {
. . 8 int t = alN - 1 - i];
watchpoint set variable] oi 7 2
—> allil = _;

11 }

<variable> G G 0 T) 4

13 std::cout << alil;

Conditional breakpoints

These are breakpoints that are triggered only if a specified condition is true

Condition is checked every time when program reaches particular line of
code

GDB:

break [location] 1f [condition]
LLDB:

breakpoint set --name [function] --condition
'[condition]’

Modifying Program State

Debuggers often allow altering the state of the program, such as changing
variable values or jumping to different points in the code.

GDB:

set var <variable>=<value>
LLDB:

expression <variable> = <value>

Modifying Program State

(1ldb) r
There is a running process, kill it and restart?: [Y/n] y
Process 44495 exited with status = 9 (0x00000009) killed
Process 54529 launched: '/Users/arseniy/Projects/temp/a.out' (armé4)
Process 54529 stopped
*x thread #1, queue = 'com.apple.main-thread', stop reason =

frame #0: 0x00000001000030dc a.out main at main.cpp:6:9

#define N 10

= int Q[] = { ’ ’ ’ ’
for (int i =0; i <N/
int t = a[N - 1 - i];
9 alN - 1 - i] = alil;
(1ldb) n
Process 54529 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason =
frame #0: 0x00000001000030e@ a.out main at main.cpp:7:14
4

» 9%

': J'r+15 {

3
4
5 int main() {
6
7
8

int main() {
int all = { ’ ’ ’ ’ ’ ! ’ ’
for (int i = 0; 1 <N / 2; ++i) {
int t = alN -1 - i];
alN - 1 - i] = alil;
10 ali]l = t;
(1ldb) frame variable a
(int[9]) a = ([0] =1, [1] = 2, [2] 6, [6] =7, [7] =8, [8] =9)
(1ldb) expression al[5] += 100500
(int) $0 = 100506
(1ldb) frame variable a
(int[9]) a = ([0] = 1, [1] = 2, [2] 100506, [6] = 7, [7] = 8, [8] = 9)

};

Remote debugging

This feature enables the debugging of a program running on a different
machine than the debugger, which is useful for testing in different
environments or on different hardware.

Host Target
Serial or Ethernet
cccccc tion HEt'I.'l'ﬂrk
ARCH-linux-gdb < > gdbserver Deployed app D
A A I -)
Y Y ’ "
Remote Debugger 1—@ D—F Visual Studio
Binaries and libraries Running program N i
with debugging with binaries and . S
symbols not libraries that can be ‘g')
stripped stripped

gdb/lldb network debugging MSVC network debugging

LLDB network debugging architecture

client

GDB remote protocol

CLI

Windows

Expression evaluation

* Parsing programming languages is still a challenge for debuggers
* Hard to keep up with all new features

* For C++ LLDB uses a full Clang instance

* Generate AST for given expression and try to generate a DWARF expression or JIT
code

GDB remote protocol

* Exchange textual messages in the format

-> $packet-data#checksum
<-+

* Checksum is modulo 256 sum of all characters between $ and #

* Most common packets

*? — query reason for halt

*b addr,mode — set breakpoint

*Cc addr — continue at addr

*g — read general registers

*g XX... — write general registers
*m addr, length - read memory

*m addr, length:XX.. - write memory

https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html

https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html

Python interface

* LLDB has flexible scripting facilities
* |Interfaces to control entire debugging session
* Custom debugger commands
* Pretty printers

* Customize debugger to support your data structures

Time travel

* Time travel debugging is the ability to step back one or more instructions

* Basic principle: save state in particular points of program execution and
restore it

* Typical implementation ideas:
* Virtual machine, that saves the whole processor state
* Save state on perf counters change only
* Use hardware assistance: Intel Processor Trace (PT), ARM CoreSight

* Limitations:
* Networking, GPUs, other peripherals
* Multithreading

More useful materials on LLDB

LLDB tutorial: https://lldb.llvm.org/use/tutorial.html
GDB to LLDB commands mapping: https://lldb.llvm.org/use/map.html

https://lldb.llvm.org/use/tutorial.html
https://lldb.llvm.org/use/map.html

Test

https://forms.gle/ESvwo5dfw9drBFvk7
Submission time: 10 minutes

B yeM 3aknoyaeTca NnpuHUMUN p360TbI oTnagyuka?

Your answer

Ha kakoM aTtane KoMnunsiumMm reHepupyercs nHbopmMauums, Heobxoanmas Ans
npaBubHOW paboTbl oTNag4uMKa?

Your answer

Backup: me@gooddoog.ru

https://forms.gle/ESvwo5dfw9drBFvk7
mailto:me@gooddoog.ru

Extra materials

* Greg Law "Give me 15 minutes & I'll change your view of GDB” - https://www.youtube.com/watch?v=PorfLSr3DDI

* LLVM Developers’ Meeting: R. Isemann “Better C++ debugging using Clang Modules in LLDB” -
https://www.youtube.com/watch?v=vuNZLIHhyOk

e 2015 EuroLLVM Developers’ Meeting: “Why should | use LLDB?"- https://www.youtube.com/watch?v=JtpQZw9NplU

https://www.youtube.com/watch?v=PorfLSr3DDI
https://www.youtube.com/watch?v=vuNZLlHhy0k
https://www.youtube.com/watch?v=JtpQZw9NpIU

	Compilers 101
	Previously…
	Why debugging?
	Debuggers in a nutshell
	Executable and linkable format (ELF)
	DWARF
	Working with DWARF
	PE and PDB
	ELF and PE
	From LLVM IR to DWARF
	ptrace
	Debugger Engine
	Debugger features
	Breakpoints
	Step-by-step execution
	Inspect local variables and stack
	Stack trace
	Watchpoints
	Conditional breakpoints
	Modifying Program State
	Modifying Program State (2)
	Remote debugging
	LLDB network debugging architecture
	Expression evaluation
	GDB remote protocol
	Python interface
	Time travel
	More useful materials on LLDB
	Test (2)
	Extra materials

